Advertisement

Purinergic Signalling

, Volume 13, Issue 3, pp 279–292 | Cite as

Potential role of P2X7R in esophageal squamous cell carcinoma proliferation

  • André A SantosJr
  • Angélica R Cappellari
  • Fernanda O de Marchi
  • Marina P Gehring
  • Aline Zaparte
  • Caroline A Brandão
  • Tiago Giuliani Lopes
  • Vinicius D da Silva
  • Luis Felipe Ribeiro Pinto
  • Luiz Eduardo Baggio Savio
  • Aline Cristina Abreu Moreira-Souza
  • Robson Coutinho-Silva
  • Juliano D Paccez
  • Luiz F Zerbini
  • Fernanda B MorroneEmail author
Original Article

Abstract

Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5′-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.

Keywords

P2X7R Esophageal cancer Proliferation ATP Ectonucleotidases 

Notes

Acknowledgements

This work was supported by CAPES and CNPq scholarships, PUCRS, and FINEP research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) no. 01.11.0014-00. We would like to thank Dr. Guido Lenz from UFRGS for P2X7R antibody donation, Dr. Mohamed I Parker from ICGEB, Dr. Ana Maria O. Battastini from UFRGS, and Dr. Maria Martha Campos from PUCRS for their intellectual and technical advice.

Compliance with ethical standards

Conflicts of interest

André A Santos Jr declares that he has no conflict of interest.

Angélica R Cappellari declares that she has no conflict of interest.

Fernanda O de Marchi declares that she has no conflict of interest.

Marina P Gehring declares that she has no conflict of interest.

Aline Zaparte declares that she has no conflict of interest.

Caroline A Brandão declares that she has no conflict of interest.

Tiago Giuliani Lopes declares that he has no conflict of interest.

Luis Felipe Ribeiro Pinto that he has no conflict of interest.

Vinicius Duval da Silva declares that he has no conflict of interest.

Robson Coutinho-Silva declares that he has no conflict of interest.

Juliano D Paccez declares that she has no conflict of interest.

Luiz F Zerbini declares that he has no conflict of interest.

Fernanda B Morrone declares that she has no conflict of interest.

Ethical approval

Histological samples of human ESCC and esophageal tissue samples of patients with esophagitis were collected, between July and December 2015, from patients who underwent endoscopic procedures with biopsies and/or surgical resection at Pontificia Universidade Católica do Rio Grande do Sul (PUCRS, Porto Alegre, Brazil). The diagnosis was reviewed by two certified pathologists with at least 20-year experience in surgical pathology. Samples were obtained in accordance with approved ethical standards of the Institutional Research Ethics Committee (CAAE 4969 6115.0.0000.5336).

Supplementary material

11302_2017_9559_MOESM1_ESM.tif (9.9 mb)
Fig. S1 ATP reduces the cell migration in KYSE450 cancer cell line. (A) Representative images of ATP treatments at various times after monolayer wounding. (B) Quantification of cell migration assays. The means shown were obtained from 10 measurements of each time point and condition. The experiment was performed two times in triplicate. (TIFF 10159 kb)
11302_2017_9559_Fig8_ESM.gif (264 kb)

High resolution image (GIF 264 kb)

11302_2017_9559_MOESM2_ESM.tif (7.1 mb)
Fig. S2 Evaluation of E-NTPDases and CD73 expression and activity in EPC2, KYSE30, and OE21 esophageal cancer cell line. (A) RT-qPCR analysis of NTPD1, NTPD2, and CD73 relative expression was performed and the values were showed as ΔCq relative expression in relation to GAPDH in EPC2, KYSE30, and OE21 cancer cell lines. The significance was described as **p < 0.01 and ***p < 0.001 and indicate difference in relation to EPC2 cell line and #p < 0.05 and ###p < 0.001 indicating difference of KYSE30. (B) Evaluation of enzymatic activity as described in “Material and Methods” section. *P < 0.05 and indicate difference in relation to ADP hydrolysis. (TIFF 7227 kb)
11302_2017_9559_Fig9_ESM.gif (38 kb)

High resolution image (GIF 37 kb)

References

  1. 1.
    Zhang Y, Pan T, Zhong X, Cheng C (2014) Nicotine upregulates microRNA-21 and promotes TGF-beta-dependent epithelial-mesenchymal transition of esophageal cancer cells. Tumour Biol 35(7):7063–7072. doi: 10.1007/s13277-014-1968-z PubMedCrossRefGoogle Scholar
  2. 2.
    Instituto Nacional de Câncer José de Alencar Gomes da Silva (2015) Estimate (2016) - Cancer Incidence in Brazil. Rio de Janeiro, INCAGoogle Scholar
  3. 3.
    Dawsey SM, Fagundes RB, Jacobson BC, Kresty LA, Mallery SR, Paski S, van den Brandt PA (2014) Diet and esophageal disease. Ann N Y AcadSci 1325:127–137. doi: 10.1111/nyas.12528 CrossRefGoogle Scholar
  4. 4.
    Morita M, Kumashiro R, Kubo N, Nakashima Y, Yoshida R, Yoshinaga K, Saeki H, Emi Y, KakejiY SY, Toh Y, Maehara Y (2010) Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: epidemiology, clinical findings, and prevention. Int J ClinOncol 15(2):126–134. doi: 10.1007/s10147-010-0056-7 Google Scholar
  5. 5.
    Verschuur EM, Siersema PD (2010) Diagnostics and treatment of esophageal cancers. NedTijdschrTandheelkd 117(9):427–431Google Scholar
  6. 6.
    Dandara C, Li DP, Walther G, Parker MI (2006) Gene-environment interaction: the role ofSULT1A1 and CYP3A5 polymorphisms as risk modifiers for squamous cell carcinoma of the oesophagus. Carcinogenesis 27(4):791–797. doi: 10.1093/carcin/bgi257 PubMedCrossRefGoogle Scholar
  7. 7.
    Ferlay J, Soerjomataram I, Ervik M, (2013) GLOBOCAN 2012 cancer incidence and mortality worldwide: IARC cancer base no. 11. International Agency for Research on Cancer. Accessed Jan 2016Google Scholar
  8. 8.
    Rubenstein JH, Shaheen NJ (2015) Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 149(2):302–317. doi: 10.1053/j.gastro.2015.04.053 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Siewert JR, Stein HJ, Feith M, Bruecher BL, Bartels H, Fink U (2001) Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1,000 consecutive resections at a single center in the Western world. Ann Surg 234(3):360–367 discussion 368-369PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19(34):5598–5606. doi: 10.3748/wjg.v19.i34.5598 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wu L, Herman JG, Brock MV, Wu K, Mao G, Yan W, Nie Y, Liang H, Zhan Q, Li W, Guo M (2014) Silencing DACH1 promotes esophageal cancer growth by inhibiting TGF-beta signaling. PLoS One 9(4):e95509. doi: 10.1371/journal.pone.0095509PONE-D-14-06744 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yao R, Chen Z, Zhou C, Luo M, Shi X, Li J, Gao Y, Zhou F, Pu J, Sun H, He J (2015) Xerophilusin B induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma cells and does not cause toxicity in nude mice. J Nat Prod 78(1):10–16. doi: 10.1021/np500429w PubMedCrossRefGoogle Scholar
  13. 13.
    Xue L, Yang L, Jin ZA, Gao F, Kang JQ, Xu GH, Liu B, Li H, Wang XJ, Liu LJ, Wang BL, Liang SH, Ding J (2014) Increased expression of HSP27 inhibits invasion and metastasis in human esophageal squamous cell carcinoma. TumourBiol 35(7):6999–7007. doi: 10.1007/s13277-014-1946-5 Google Scholar
  14. 14.
    Di Virgilio F (2012) Purines, purinergic receptors, and cancer. Cancer Res 72(21):5441–5447. doi: 10.1158/0008-5472.CAN-12-1600 PubMedCrossRefGoogle Scholar
  15. 15.
    Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal. doi: 10.1007/s11302-013-9372-5 Google Scholar
  16. 16.
    Bastid J, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, Cochaud S, Laprevotte E, Funck-Brentano E, Hemon P, Gros L, Bec N, Larroque C, Alberici G, Bensussan A, Eliaou JF (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer immunology research 3(3):254–265. doi: 10.1158/2326-6066.CIR-14-0018 PubMedCrossRefGoogle Scholar
  17. 17.
    White N, Burnstock G (2006) P2 receptors and cancer. Trends PharmacolSci 27(4):211–217. doi: 10.1016/j.tips.2006.02.004 CrossRefGoogle Scholar
  18. 18.
    Di Virgilio F, Ferrari D, Adinolfi E (2009) P2X(7): a growth-promoting receptor-implications for cancer. Purinergic Signal 5(2):251–256. doi: 10.1007/s11302-009-9145-3 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Larsson KP, Hansen AJ, Dissing S (2002) The human SH-SY5Y neuroblastoma cell-line expresses a functional P2X7 purinoceptor that modulates voltage-dependent Ca2+ channel function. J Neurochem 83(2):285–298PubMedCrossRefGoogle Scholar
  20. 20.
    Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16(5):846–856. doi: 10.1359/jbmr.2001.16.5.846 PubMedCrossRefGoogle Scholar
  21. 21.
    Greig AV, Linge C, Healy V, Lim P, Clayton E, Rustin MH, McGrouther DA, Burnstock G (2003) Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121(2):315–327. doi: 10.1046/j.1523-1747.2003.12379.x PubMedCrossRefGoogle Scholar
  22. 22.
    Calvert RC, Shabbir M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24(5A):2853–2859PubMedGoogle Scholar
  23. 23.
    Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13(2):137–145. doi: 10.1097/01.cmr.0000056225.78713.42 PubMedCrossRefGoogle Scholar
  24. 24.
    Roger S, Jelassi B, Couillin I, Pelegrin P, Besson P, Jiang LH (2015) Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochim Biophys Acta 1848(10 Pt B):2584–2602. doi: 10.1016/j.bbamem.2014.10.029 PubMedCrossRefGoogle Scholar
  25. 25.
    Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109(5):983–991. doi: 10.1002/jcb.22478 PubMedCrossRefGoogle Scholar
  26. 26.
    Gehring MP, Pereira TC, Zanin RF, Borges MC, Filho AB, Battastini AM, Bogo MR, Lenz G, Campos MM, Morrone FB (2012) P2X7 receptor activation leads to increased cell death in a radiosensitive human glioma cell line. Purinergic Signal 8(4):729–739. doi: 10.1007/s11302-012-9319-2 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    White N, Butler PE, Burnstock G (2005) Human melanomas express functional P2X(7)receptors. Cell Tissue Res 321(3):411–418. doi: 10.1007/s00441-005-1149-x PubMedCrossRefGoogle Scholar
  28. 28.
    Fang J, Chen X, Zhang L, Chen J, Liang Y, Li X, Xiang J, Wang L, Guo G, Zhang B, Zhang W (2013) P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. Int J Biochem Cell Biol 45(6):1109–1120. doi: 10.1016/j.biocel.2013.03.005 PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Q, Wang L, Feng YH, Li X, Zeng R, Gorodeski GI (2004) P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am J Physiol Cell Physiol 287(5):C1349–C1358. doi: 10.1152/ajpcell.00256.200400256.2004 PubMedCrossRefGoogle Scholar
  30. 30.
    Ryu JK, Jantaratnotai N, Serrano-Perez MC, McGeer PL, McLarnon JG (2011) Block ofpurinergic P2X7R inhibits tumor growth in a C6 glioma brain tumor animal model. Journal ofneuropathology and experimental neurology 70(1):13–22. doi: 10.1097/NEN.0b013e318201d4d4 CrossRefGoogle Scholar
  31. 31.
    Adinolfi E, Capece M, Franceschini A, Falzoni S, Giuliani AL, Rotondo A, Sarti AC, Bonora M, Syberg S, Corigliano D, Pinton P, Jorgensen NR, Abelli L, Emionite L, Raffaghello L, Pistoia V, DiVirgilio F (2015) Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Res 75(4):635–644. doi: 10.1158/0008-5472.CAN-14-1259 PubMedCrossRefGoogle Scholar
  32. 32.
    Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14(1):203. doi: 10.1186/s12943-015-0472-4 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Vazquez-Cuevas FG, Martinez-Ramirez AS, Robles-Martinez L, Garay E, Garcia-Carranca A, Perez-Montiel D, Castaneda-Garcia C, Arellano RO (2014) Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115(11):1955–1966. doi: 10.1002/jcb.24867 PubMedGoogle Scholar
  34. 34.
    Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157(2):375–380PubMedCrossRefGoogle Scholar
  35. 35.
    Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20(22):6347–6358. doi: 10.1093/emboj/20.22.6347 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMedGoogle Scholar
  37. 37.
    Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3(7):e2599. doi: 10.1371/journal.pone.0002599 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi: 10.1038/nm.3394 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577. doi: 10.1126/science.1208347 PubMedCrossRefGoogle Scholar
  40. 40.
    Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39):5346–5358. doi: 10.1038/onc.2010.292 PubMedCrossRefGoogle Scholar
  41. 41.
    Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, Seror C, Metivier D, Perfettini JL, Zitvogel L, Kroemer G (2009) Chemotherapy induces ATP release from tumor cells. Cell Cycle 8(22):3723–3728PubMedCrossRefGoogle Scholar
  42. 42.
    Ohshima Y, Tsukimoto M, Takenouchi T, Harada H, Suzuki A, Sato M, Kitani H, Kojima S (2010) Gamma-irradiation induces P2X(7) receptor-dependent ATP release from B16 melanoma cells. Biochim Biophys Acta 1800(1):40–46. doi: 10.1016/j.bbagen.2009.10.008 PubMedCrossRefGoogle Scholar
  43. 43.
    Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. doi: 10.1007/s11302-006-9003-5 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. doi: 10.1152/physrev.00015.2002 PubMedCrossRefGoogle Scholar
  45. 45.
    Bianco F, Colombo A, Saglietti L, Lecca D, Abbracchio MP, Matteoli M, Verderio C (2009) Different properties of P2X(7) receptor in hippocampal and cortical astrocytes. Purinergic Signal 5(2):233–240. doi: 10.1007/s11302-009-9137-3 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys ResCommun 332(1):17–27. doi: 10.1016/j.bbrc.2005.04.087 CrossRefGoogle Scholar
  47. 47.
    Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P, Callegari MG, Sandona D, Markwardt F, Schmalzing G, Di Virgilio F (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24(9):3393–3404. doi: 10.1096/fj. 09-153601 PubMedCrossRefGoogle Scholar
  48. 48.
    Di Virgilio F, Chiozzi P, Falzoni S, Ferrari D, Sanz JM, Venketaraman V, Baricordi OR (1998) Cytolytic P2X purinoceptors. Cell Death Differ 5(3):191–199. doi: 10.1038/sj.cdd.4400341 PubMedCrossRefGoogle Scholar
  49. 49.
    Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku AS, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB (2015) P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 68:92–100. doi: 10.1016/j.biocel.2015.09.001 PubMedCrossRefGoogle Scholar
  50. 50.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Genin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, Andre F, Lidereau R, McLaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178. doi: 10.1038/nm.2028 PubMedCrossRefGoogle Scholar
  51. 51.
    Boldrini L, Giordano M, Ali G, Melfi F, Romano G, Lucchi M, Fontanini G (2015) P2X7 mRNA expression in non-small cell lung cancer: microRNA regulation and prognostic value. Oncol Lett 9(1):449–453. doi: 10.3892/ol.2014.2620 PubMedGoogle Scholar
  52. 52.
    Roger S, Pelegrin P (2011) P2X7 receptor antagonism in the treatment of cancers. Expert Opin Investig Drugs 20(7):875–880. doi: 10.1517/13543784.2011.583918 PubMedCrossRefGoogle Scholar
  53. 53.
    Kwon JH, Nam ES, Shin HS, Cho SJ, Park HR, Kwon MJ (2014) P2X7 receptor expression in coexistence of papillary thyroid carcinoma with Hashimoto's thyroiditis. Korean J Pathol 48(1):30–35. doi: 10.4132/KoreanJPathol. 2014.48.1.30 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lin EW, Karakasheva TA, Hicks PD, Bass AJ, Rustgi AK (2016) The tumor microenvironment in esophageal cancer. Oncogene. doi: 10.1038/onc.2016.34 Google Scholar
  55. 55.
    O'Sullivan KE, Phelan JJ, O'Hanlon C, Lysaght J, O'Sullivan JN, Reynolds JV (2014) The role of inflammation in cancer of the esophagus. Expert Rev Gastroenterol Hepatol 8(7):749–760. doi: 10.1586/17474124.2014.913478 PubMedCrossRefGoogle Scholar
  56. 56.
    Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M (2005) Cell migration and invasion assays. Methods 37:208–215PubMedCrossRefGoogle Scholar
  57. 57.
    Welter-Stahl L, Silva CM, Schachter J, Persechini PM, Soza HS, Ojcius DM, Coutinho-Silva R (2009) Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNY in human epithelial cells. Biochim Biophys Acta 1788:1176–1187PubMedCrossRefGoogle Scholar
  58. 58.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signaling cascade. Biochim Biophys Acta 1783:673–694PubMedCrossRefGoogle Scholar
  59. 59.
    Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacological & Therapeutics 87:161–173CrossRefGoogle Scholar
  60. 60.
    Wei W, Ryu JK, Choi HB, McLarmon JG (2008) Expression and function of the P2X7 receptor in rat C6 glioma cells. Cancer Lett 260(1):79–78PubMedCrossRefGoogle Scholar
  61. 61.
    Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Goré J, Jiang LH, Roger S (2013) Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 34(7):1487–1496PubMedCrossRefGoogle Scholar
  62. 62.
    Ghalali A, Wiklund F, Zheng H, Stenius U, Högberg J (2014) Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis 35(7):1547–1555PubMedCrossRefGoogle Scholar
  63. 63.
    Jelassi B, Chantôme A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011 May 5) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30(18):2108–2122PubMedCrossRefGoogle Scholar
  64. 64.
    Morrone FB, Gehring MP, Nicoletti Natália F (2016) Calcium channels in malignant brain tumors. Mol Pharmacol 90(3):403–409PubMedCrossRefGoogle Scholar
  65. 65.
    Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink M, Azambuja AA, Barrios CH, Morrone FB, Battastini AMO (2010) Differential ectonucleotidase expression in human bladder cancer cell lines. Urology Oncology 28:260–267CrossRefGoogle Scholar
  66. 66.
    Maaser K, Höpfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherübl H (2002) Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br Jn 86(4):636–644Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • André A SantosJr
    • 1
  • Angélica R Cappellari
    • 1
  • Fernanda O de Marchi
    • 2
  • Marina P Gehring
    • 1
  • Aline Zaparte
    • 3
  • Caroline A Brandão
    • 4
  • Tiago Giuliani Lopes
    • 5
  • Vinicius D da Silva
    • 3
    • 4
    • 5
  • Luis Felipe Ribeiro Pinto
    • 6
    • 7
  • Luiz Eduardo Baggio Savio
    • 8
  • Aline Cristina Abreu Moreira-Souza
    • 8
  • Robson Coutinho-Silva
    • 8
  • Juliano D Paccez
    • 9
  • Luiz F Zerbini
    • 9
    • 10
  • Fernanda B Morrone
    • 1
    • 2
    • 3
    Email author
  1. 1.Programa de Pós-Graduação em Biologia Celular e MolecularPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Faculdade de FarmáciaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.Programa de Pós-graduação em Medicina e Ciências da SaúdePontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  4. 4.Faculdade de MedicinaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  5. 5.Hospital São Lucas da PUCRSPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  6. 6.Programa de Carcinogênese Molecular, Coordenação de PesquisaInstituto Nacional do Câncer (INCA)Rio de JaneiroBrazil
  7. 7.Departamento de BioquímicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  8. 8.Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  9. 9.International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics GroupCape TownSouth Africa
  10. 10.Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations