Skip to main content

Advertisement

Log in

Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT)

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The epithelium-mesenchymal transition (EMT) is an important process of cell plasticity, consisting in the loss of epithelial identity and the gain of mesenchymal characteristics through the coordinated activity of a highly regulated informational program. Although it was originally described in the embryonic development, an important body of information supports its role in pathology, mainly in cancerous and fibrotic processes. The purinergic system of inter-cellular communication, mainly based in ATP and adenosine acting throughout their specific receptors, has emerged as a potent regulator of the EMT in several pathological entities. In this context, cellular signaling associated to purines is opening the understanding of a new element in the complex regulatory network of this phenotypical differentiation process. In this review, we have summarized recent information about the role of ATP and adenosine in EMT, as a growing field with high therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Oestreich-Janzen S (2016) Caffeine: characterization and properties, in Encyclopedia of Food and Health. In: Caballero, B, Finglas, PM and Toldrá F (Eds). Elsevier – Academic Press, pp 556–572.

  2. Stasyuk O, Szatylowicz H, Krygowski TM (2012) Effect of the H-bonding on aromaticity of purine of tautomers. J Org Chem 77:4035–4045

    Article  CAS  PubMed  Google Scholar 

  3. Sugar D, Kierdaszuk B (1985) Proc Int Symp Biomol Struct interactions, Suppl. J Biosci 8:657

    Article  Google Scholar 

  4. Morgan AR (1993) Base mismatches and mutagenesis: how important is tautomerism? Trends Biochem Sci 18:160–163

    Article  CAS  PubMed  Google Scholar 

  5. Brovarets OO, Hovorun DM (2014) Does the G·G*syn syn DNA mismatch containing canonical and rare tautomers of the guanine tautomerise through the DPT? A QM/QTAIM microstructural study. Mol Phys 112:3033–3046

    Article  CAS  Google Scholar 

  6. Kushwaha PS, Kumar A, Mishra PC (2004) Electronic transitions of guanine tautomers, their stacked dimers, trimers and sodium complexes. Spectrochim Acta A Mol Biomol Spectrosc 60:719–728

    Article  CAS  PubMed  Google Scholar 

  7. Miyakawa S, Cleaves HJ, Miller SL (2002) The cold origen of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Origins of life and evolution of the biosphere. Kluwer academic publishers. The Netherlands 32:209–218

    CAS  Google Scholar 

  8. Brovarets O, Zhurakivsky R, Hovorun DM (2014) ¿is the DPT tautomerization of the long A-G Watson-crick DNA base mispair a source of the adenine and guanine mutagenic tautomers?. A QM and QTAMIR response to the biologically important question. J Comput Chem 35:451–466

    Article  CAS  PubMed  Google Scholar 

  9. Hardie DG (2011) Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93:891–896

    Article  CAS  Google Scholar 

  10. Volonté C, D’Ambrosi N (2009) Membrane compartments and purinergic signaling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 276:318–329

    Article  PubMed  CAS  Google Scholar 

  11. Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathethic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303:439–444

    Article  CAS  PubMed  Google Scholar 

  12. Dubyak GR (2012) Maxi-anion channel and pannexin 1 hemichannel constitute separate pathways for swelling-induced ATP release in murine L929 fibrosarcoma cells. Am J Physiol Cell Physiol 303:C913–C915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lazarowski ER (2012) Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal 8:359–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imamura H, Nhat KP, Togawa H, Saito K, Lino R, Kato-Yamada Y, Nagai T, Noji H (2009) Vizualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106:15651–15656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fields RD, Burnstock G (2006) Purinergic signaling in neuron-glia interactions. Nature Rev Neurosc 7:423–436

    Article  CAS  Google Scholar 

  16. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Sig 8:437–502

    Article  CAS  Google Scholar 

  17. Massé K, Bhamra S, Allsop G, Dale N, Jones EA (2010) Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction. Int J Dev Biol 54:181–193

    Article  PubMed  CAS  Google Scholar 

  18. Brunschweiger A, Muller CE (2006) P2 receptors activated by uracil nucleotides an update. Curr Med Chem 13:289–312

    Article  CAS  PubMed  Google Scholar 

  19. North RA (2016) P2X receptors. Philos Trans R Soc Lond Ser B Biol Sci 371(1700)

  20. Habermacher C, Dunning K, Chataigneau T, Grutter T (2016) Molecular structure and function of P2X receptors. Neuropharmacology 104:18–30

    Article  CAS  PubMed  Google Scholar 

  21. von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 104:50–61

    Article  CAS  Google Scholar 

  22. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson KA, Müller CE (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104:31–49

    Article  CAS  PubMed  Google Scholar 

  24. Della Latta V, Cabiati M, Rocchiccioli S, Del Ry S, Morales MA (2013) The role of adenosinergic system in lung fibrosis. Pharmacol Res 76:182–189

    Article  CAS  PubMed  Google Scholar 

  25. Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci U S A 99:8573–8578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. von Kügelgen I, Schiedel AC, Hoffmann K, Alsdorf BB, Abdelrahman A, Müller CE (2008) Cloning and functional expression of a novel Gi protein-coupled receptor for adenine from mouse brain. Mol Pharmacol 73:469–477

    Article  CAS  Google Scholar 

  27. Thimm D, Knospe M, Abdelrahman A, Moutinho M, Alsdorf BB, von Kügelgen I, Schiedel AC, Müller CE (2013) Characterization of new G protein-coupled adenine receptors in mouse and hamster. Purinergic Signal 9:415–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szabo G, Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12:387–400

    Article  CAS  PubMed  Google Scholar 

  29. Petrasek J, Iracheta-Vellve A, Saha B, Satishchandran A, Kodys K, Fitzgerald KA, Kurt-Jones EA, Szabo G (2015) Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J Leukoc Biol 98:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Virgilio F, Adinolfi E (2016) Extracellular purines, purinergic receptors and tumor growth. Oncogene doi:10.1038/onc.2016.206

  31. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  32. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ye X, Weinberg RA (2015) Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 25:675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  CAS  PubMed  Google Scholar 

  35. Viebahn C (1995) Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anat (Basel) 154:79–97

    Article  CAS  Google Scholar 

  36. Davies JA (1996) Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat (Basel) 156:187–201

    Article  CAS  Google Scholar 

  37. Greenburg G, Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95:333–339

    Article  CAS  PubMed  Google Scholar 

  38. Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Macara IG, Guyer R, Richardson G, Huo Y, Ahmed SM (2014) Epithelial homeostasis. Curr Biol 24:R815–R825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  CAS  PubMed  Google Scholar 

  42. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127:2021–2036

    Article  CAS  PubMed  Google Scholar 

  43. Pagan R, Martín I, Llobera M, Vilaró S (1997) Epithelial-mesenchymal transition of cultured rat neonatal hepatocytes is differentially regulated in response to epidermal growth factor and dimethyl sulfoxide. Hepatology 25:598–606

    Article  CAS  PubMed  Google Scholar 

  44. Savagner P, Vallés AM, Jouanneau J, Yamada KM, Thiery JP (1994) Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial-mesenchymal transition in rat bladder carcinoma cells. Mol Biol Cell 5:851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH (2008) Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26:1425–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Savagner P, Yamada KM, Thiery JP (1997) The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 137:1403–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang AD, Camp ER, Fan F, Shen L, Gray MJ, Liu W, Somcio R, Bauer TW, Wu Y, Hicklin DJ, Ellis LM (2006) Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Res 66:46–51

    Article  CAS  PubMed  Google Scholar 

  48. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26:463–476

    Article  CAS  PubMed  Google Scholar 

  49. Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J, Vandongen HM, Syn WK, Baroni GS, Benedetti A, Schuppan D, Diehl AM (2008) Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 118:3331–3342

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Radisky ES, Radisky DC (2010) Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 15:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cheng S, Lovett DH (2003) Gelatinase a (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162:1937–1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zheng G, Lyons JG, Tan TK (2009) Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 175:580–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Illman SA, Lehti K, Keski-Oja J (2006) Epilysin (MMP-28) induces TGF-beta mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci 119:3856–3866

    Article  CAS  PubMed  Google Scholar 

  55. Cowden Dahl KD, Symowicz J, Ning Y (2008) Matrix metalloproteinase 9 is a mediator of epidermal growth factor dependent E-cadherin loss in ovarian carcinoma cells. Cancer Res 68:4606–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang SH, Law CH, Kuo PH, Hu RY, Yang CC, Chung TW, Li JM, Lin LH, Liu YC, Liao EC, Tsai YT, Wei YS, Lin CC, Chang CW, Chou HC, Wang WC, Chang MD, Wang LH, Kung HJ, Chan HL, Lyu PC (2016) MMP-13 is involved in oral cancer cell metastasis. Oncotarget. doi:10.18632/oncotarget 7942

    Google Scholar 

  57. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrixmetalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  59. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278

    Article  CAS  PubMed  Google Scholar 

  60. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–2385

    Article  CAS  PubMed  Google Scholar 

  61. Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276:27424–27431

    Article  CAS  PubMed  Google Scholar 

  62. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  CAS  PubMed  Google Scholar 

  63. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiu Y, Li WH, Zhang HQ, Liu Y, Tian XX, Fang WG (2014) P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One 9:e0123388

    Google Scholar 

  65. Jelassi B, Chantome A, Alcaraz-Pérez F, Baroja-Mazo A, Cayuela ML, Pelegrin P, Surprenant A, Roger S (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30:2108–2122

    Article  CAS  PubMed  Google Scholar 

  66. Xia J, Yu X, Tang L, Li G, He T (2015) P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 34:103–110

    CAS  PubMed  Google Scholar 

  67. Adinolfi E, Raffaghello L, Giuliani AL, Cavazzini L, Capece M, Chiozzi P, Bianchi G, Kroemer G, Pistoia V, Di Virgilio F (2012) Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res 72(12):2957–2969

    Article  CAS  PubMed  Google Scholar 

  68. Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L, Adinolfi E (2015) The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 34(41):5240–5251

    Article  CAS  PubMed  Google Scholar 

  69. Gómez-Villafuertes R, García-Huerta P, Díaz-Hernández JI, Miras-Portugal MT (2015) PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep 5:18417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Vázquez-Cuevas FG, Martínez-Ramírez AS, Robles-Martínez L, Garay E, García-Carrancá A, Pérez-Montiel D, Castañeda-García C, Arellano RO (2014) Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J Cell Biochem 115:1955–1966

    PubMed  Google Scholar 

  71. Giannuzzo A, Pedersen SF, Novak I (2015) The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Mol Cancer 14:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51:5054s–5059s

    CAS  PubMed  Google Scholar 

  73. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Hüttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62:6278–6288

    CAS  PubMed  Google Scholar 

  74. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418

    Article  PubMed  PubMed Central  Google Scholar 

  76. Imhof BA, Vollmers HP, Goodman SL, Birchmeier W (1983) Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell 35:667–675

    Article  CAS  PubMed  Google Scholar 

  77. Vestweber D, Kemler R, Ekblom P (1985) Cell-adhesion molecule uvomorulin during kidney development. Dev Biol 112:213–221

    Article  CAS  PubMed  Google Scholar 

  78. Behrens J, Mareel MM, Van Roy FM, Birchmeier W (1989) Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108:2435–2447

    Article  CAS  PubMed  Google Scholar 

  79. Gooding JM, Yap KL, Ikura M (2004) The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three-dimensional structures. BioEssays 26:497–511

    Article  CAS  PubMed  Google Scholar 

  80. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Löchner D, Birchmeier W (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113:173–185

    Article  CAS  PubMed  Google Scholar 

  81. Thompson EW, Paik S, Brünner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544

    Article  CAS  PubMed  Google Scholar 

  82. Burnstock G, Di Virgilio F (2013) Purinergic signaling and cancer. Purinergic Signal 9:491–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Di Virgilio F (2012) Purines, purinergic receptors and cancer. Cancer Res 72:5441–5447

    Article  CAS  PubMed  Google Scholar 

  84. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 7:e2599

    Article  CAS  Google Scholar 

  85. Gao ZW, Dong K, Zhang HZ (2014) The roles of CD73 in cancer. Biomed Res Int 2014:460654

    PubMed  PubMed Central  Google Scholar 

  86. Chen L, He HY, Li HM, Zheng J, Heng WJ, You JF, Fang WG (2004) ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett 215:239–247

    Article  CAS  PubMed  Google Scholar 

  87. Li WH, Qiu Y, Zhang HQ, Liu Y, You JF, Tian XX, Fang WG (2013) P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br J Cancer 109:1666–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li WH, Qiu Y, Zhang HQ, Tian XX, Fang WG (2015) P2Y2 receptor and EGFR cooperate to promote prostate cancer cell invasion via ERK1/2 pathway. PLoS One 10:e013316

    Google Scholar 

  89. Martínez-Ramírez AS, Garay E, García-Carrancá A, Vázquez-Cuevas FG (2016) The P2RY2 receptor induces carcinoma cell migration and EMT through cross-talk with epidermal growth factor receptor. J Cell Biochem 117:1016–1026

    Article  PubMed  CAS  Google Scholar 

  90. Eun SY, Ko YS, Park SW, Chang KC, Kim HJ (2015) P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol Rep 34(1):195–202

    CAS  PubMed  Google Scholar 

  91. Wang Y, Sun Y, Li D, Zhang L, Wang K, Zuo Y, Gartner TK, Liu J (2013) Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS One 8:e80780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thompson S, Monteith G (2016) Altered purinergic receptor-Ca2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10:166–178

    Article  CAS  PubMed  Google Scholar 

  93. Xiong L, Wen Y, Miao X, Yang Z (2014) NT5E and FcGBP as key regulators of TGF-1-induced epithelial-mesenchymal transition (EMT) are associated with tumor progression and survival of patients with gallbladder cancer. Cell Tissue Res 355:365–374

    Article  CAS  PubMed  Google Scholar 

  94. Turcotte M, Spring K, Pommey S, Chouinard G, Cousineau I, George J, Chen GM, Gendoo DM, Haibe-Kains B, Karn T, Rahimi K, Le Page C, Provencher D, Mes-Masson AM, Stagg J (2015) CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res 75:4494–4503

    Article  CAS  PubMed  Google Scholar 

  95. Guillén-Gómez E, Pinilla-Macua I, Pérez-Torras S, Choi DS, Arce Y, Ballarin JA, Pastor-Anglada M, Díaz-Encarnación M (2012) New role of the human equilibrative nucleoside transporter 1 (hENT1) in epithelial-to-mesenchymal transition in renal tubular cells. J Cell Physiol 227:1521–1528

    Article  PubMed  CAS  Google Scholar 

  96. Wilkinson PF, Farrell FX, Morel D, Law W, Murphy S (2016) Adenosine signaling increases proinflammatory and profibrotic mediators through activation of a functional adenosine 2B receptor in renal fibroblasts. Ann Clin Lab Sci 46(4):339–345

    PubMed  Google Scholar 

  97. Fernández P, Trzaska S, Wilder T, Chiriboga L, Blackburn MR, Cronstein BN, Chan ES (2008) Pharmacological blockade of A2A receptors prevents dermal fibrosis in a model of elevated tissue adenosine. Am J Pathol 172:1675–1682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lee J, Hwang I, Lee JH, Lee HW, Jeong LS, Ha H (2013) The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. Am J Phatol 183:1488–1497

    CAS  Google Scholar 

  99. Xiao H, Shen HY, Liu W, Xiong RP, Li P, Meng G, Yang N, Chen X, Si LY, Zhou YG (2013) Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS One 8:e60173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Inoue K, Slaton JW, Eve BY, Kim SJ, Perotte P, Balbay MD, Yano S, Bar-Eli M, Radinsky R, Pettaway CA, Dinney CP (2000) Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin Cancer Res 6:2104–2119

    CAS  PubMed  Google Scholar 

  101. Ma X, Pan X, Wei Y, Tan B, Yang L, Ren H, Qian M, Du B (2016) Chemotherapy-induced uridine diphosphate release promotes breast cancer metastasis through P2Y6 activation. Oncotarget. doi:10.18632/oncotarget.8664

    Google Scholar 

  102. Schneider G, Glaser T, Lameu C, Abdelbaset-Ismail A, Sellers ZP, Moniuszko M, Ulrich H, Ratajczak MZ (2015) Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Mol Cancer 14:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Oh HK, Sin JI, Choi J, Park SH, Lee TS, Choi YS (2012) Overexpression of CD73 in epithelial ovarian carcinoma is associated with better prognosis, lower stage, better differentiation and lower regulatory T cell infiltration. J Gynecol Oncol 23:274–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cappellari AR, Pillat MM, Souza HD, Dietrich F, Oliveira FH, Figueiró F, Abujamra AL, Roesler R, Lecka J, Sévigny J, Battastini AM, Ulrich H (2015) Ecto-5′ nucleotidase overexpression reduces tumor growth in a Xenograph medulloblastoma model. PLoS One 10(10):e0140996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683

    Article  CAS  PubMed  Google Scholar 

  106. Syn N, Wang L, Sethi G, Thiery JP, Goh BC (2016) Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from Immunosurveillance. Trends Pharmacol Sci 37:606–617

    Article  CAS  PubMed  Google Scholar 

  107. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  CAS  PubMed  Google Scholar 

  108. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A, Zürrer-Härdi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA (2012) Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148:1015–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA, Ellis LM (2012) Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med 1:5–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Glaser T, de Oliveira SL, Cheffer A, Beco R, Martins P, Fornazari M, Lameu C, Junior HM, Coutinho-Silva R, Ulrich H (2014) Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 9(5):e96281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. D’Alimonte I, Nargi E, Zuccarini M, Lanuti P, Di Iorio P, Giuliani P, Ricci-Vitiani L, Pallini R, Caciagli F, Ciccarelli R (2015) Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signal 11:331–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, Van’t Veer L, Tollenaar RA, Jackson DB, Agrawal D, Dai H, Yeatman TJ (2011) EMT is the dominant program in human colon cancer. BMC Med Genet 20:9

    Google Scholar 

  113. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, Nilsson MB, Gudikote J, Tran H, Cardnell RJ, Bearss DJ, Warner SL, Foulks JM, Kanner SB, Gandhi V, Krett N, Rosen ST, Kim ES, Herbst RS, Blumenschein GR, Lee JJ, Lippman SM, Ang KK, Mills GB, Hong WK, Weinstein JN, Wistuba II, Coombes KR, Minna JD, Heymach JV (2013) An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 19:279–290

    Article  CAS  PubMed  Google Scholar 

  114. Huang RY, Kuay KT, Tan TZ, Asad M, Tang HM, Ng AH, Ye J, Chung VY, Thiery JP (2015) Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget 6:22098–22113

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S (2015) High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics 216:944

    Article  CAS  Google Scholar 

  116. Roudi R, Madjd Z, Ebrahimi M, Najafi A, Korourian A, Shariftabrizi A, Samadikuchaksaraei A (2016) Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma. Tumour Biol. doi:10.1007/s13277-016-5041-y

    PubMed  Google Scholar 

  117. Cheng Q, Chang JT, Gwin WR, Zhu J, Ambs S, Geradts J, Lyerly HK (2014) A signature of epithelial-mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype. Breast Cancer Res 16:407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64:830–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stempien-Otero A, Kim DH, Davis J (2016) Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol 97:153–161

    Article  CAS  PubMed  Google Scholar 

  121. Nakamura M, Tokura Y (2011) Epithelial-mesenchymal transition in the skin. J Dermatol Sci 61:7–13

    Article  CAS  PubMed  Google Scholar 

  122. Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116

    Article  CAS  PubMed  Google Scholar 

  123. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282:23337–23347

    Article  CAS  PubMed  Google Scholar 

  124. Meindl-Beinker NM, Dooley S (2008) Transforming growth factor-beta and hepatocyte transdifferentiation in liver fibrogenesis. J Gastroenterol Hepatol Suppl 1:S122–S127

    Article  CAS  Google Scholar 

  125. Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A (2007) Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 282:22089–22101

    Article  CAS  PubMed  Google Scholar 

  126. Xiao Y, Zhou Y, Chen Y, Zhou K, Wen J, Wang Y, Wang J, Cai W (2015) The expression of epithelial-mesenchymal transition-related proteins in biliary epithelial cells is associated with liver fibrosis in biliary atresia. Pediatr Res 77:310–315

    Article  CAS  PubMed  Google Scholar 

  127. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, Wu CC, Hagos Y, Burckhardt BC, Pentcheva-Hoang T, Nischal H, Allison JP, Zeisberg M, Kalluri R (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao Y, Qiao X, Wang L, Tan TK, Zhao H, Zhang Y, Zhang J, Rao P, Cao Q, Wang Y, Wang Y, Wang YM, Lee VW, Alexander SI, Harris DC, Zheng G (2016) Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via notch activation in human kidney glomerular endothelial cells. BMC Cell Biol 17:21. doi:10.1186/s12860-016-0101-0

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  CAS  PubMed  Google Scholar 

  130. Lu D, Insel PA (2014) Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis. Am J Physiol Cell Physiol 306:C779–C788

    Article  CAS  PubMed  Google Scholar 

  131. Vega JL, Puebla C, Vásquez R, Farías M, Alarcón J, Pastor-Anglada M, Krause B, Casanello P, Sobrevia L (2009) TGF-beta1 inhibits expression and activity of hENT1 in a nitric oxide-dependent manner in human umbilical vein endothelium. Cardiovasc Res 82:458–467

    Article  CAS  PubMed  Google Scholar 

  132. Perez-Aso M, Fernandez P, Mediero A, Chan ES, Cronstein BN (2014) Adenosine 2A receptor promotes collagen production by human fibroblasts via pathways involving cyclic AMP and AKT but independent of Smad2/3. FASEB J 28:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan ES, Liu H, Fernandez P, Luna A, Perez-Aso M, Bujor AM, Trojanowska M, Cronstein BN (2013) Adenosine a(2A) receptors promote collagen production by a Fli1 and CTGF-mediated mechanism. Arthritis Res Ther 15:R58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pérez-Carreón JI, Martínez-Pérez L, Loredo ML, Yañez-Maldonado L, Velasco-Loyden G, Vidrio-Gómez S, Ramírez-Salcedo J, Hernández-Luis F, Velázquez-Martínez I, Suárez-Cuenca JA, Hernández-Muñoz R, de Sánchez VC (2010) An adenosine derivative compound, IFC305, reverses fibrosis and alters gene expression in a pre-established CCl(4)-induced rat cirrhosis. Int J Biochem Cell Biol 42(2):287–296

    Article  PubMed  CAS  Google Scholar 

  135. Velasco-Loyden G, Pérez-Carreón JI, Agüero JF, Romero PC, Vidrio-Gómez S, Martínez-Pérez L, Yáñez-Maldonado L, Hernández-Muñoz R, Macías-Silva M, de Sánchez VC (2010) Prevention of in vitro hepatic stellate cells activation by the adenosine derivative compound IFC305. Biochem Pharmacol 80:1690–1699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Dorothy Pless and LCC. Jessica González Norris for editing the manuscript. This work was funded by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT-UNAM-México), number IN205114 and IN200815 to FGV-C and MD-M. ASM-R is student of Programa de Doctorado en Ciencias Biomédicas-UNAM, México and received a fellowship (number 369701) from CONACyT-México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Vázquez-Cuevas.

Ethics declarations

Conflicts of interest

Angélica S. Martínez-Ramírez declares that she has no conflict of interest.

Mauricio Díaz Muñoz declares that he has no conflict of interest.

Armando Butanda-Ochoa declares that he has no conflict of interest.

Francisco G. Vázquez-Cuevas declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Ramírez, A.S., Díaz-Muñoz, M., Butanda-Ochoa, A. et al. Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT). Purinergic Signalling 13, 1–12 (2017). https://doi.org/10.1007/s11302-016-9550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9550-3

Keywords

Navigation