Purinergic Signalling

, Volume 12, Issue 4, pp 595–609 | Cite as

Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression

  • Martha de Oliveira Bravo
  • Juliana Lott Carvalho
  • Felipe Saldanha-Araujo
Review Article


Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)—two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.


Adenosine Mesenchymal stem cells Regulatory T-cells 


Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen J-F, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov 12:265–86. doi: 10.1038/nrd3955 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Allard B, Turcotte M, Stagg J (2012) CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol 2012:485156. doi: 10.1155/2012/485156 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kaczmarek E, Koziak K, Sévigny J et al (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122. doi: 10.1074/jbc.271.51.33116 PubMedCrossRefGoogle Scholar
  4. 4.
    Resta R, Yamashita Y, Thompson LF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109. doi: 10.1111/j.1600-065X.1998.tb01574.x PubMedCrossRefGoogle Scholar
  5. 5.
    Alam M, Costales M, Cavanaugh C, Williams K (2015) Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules 5:775–792. doi: 10.3390/biom5020775 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. doi: 10.1038/nrd2638 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta Mol Cell Res 1783:673–694. doi: 10.1016/j.bbamcr.2008.01.024 CrossRefGoogle Scholar
  8. 8.
    Corriden R, Insel PA (2012) New insights regarding the regulation of chemotaxis by nucleotides, adenosine, and their receptors. Purinergic Signal 8:587–598. doi: 10.1007/s11302-012-9311-x PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bono MR, Fernández D, Flores-Santibáñez F et al (2015) CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression. FEBS Lett 589:3454–3460. doi: 10.1016/j.febslet.2015.07.027 PubMedCrossRefGoogle Scholar
  10. 10.
    Cunha R a (2005) Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1:111–34. doi: 10.1007/s11302-005-0649-1 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ngamsri K-C, Wagner R, Vollmer I et al (2010) Adenosine receptor A1 regulates polymorphonuclear cell trafficking and microvascular permeability in lipopolysaccharide-induced lung injury. J Immunol 185:4374–84. doi: 10.4049/jimmunol.1000433 PubMedCrossRefGoogle Scholar
  12. 12.
    Liao Y, Takashima S, Asano Y et al (2003) Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 93:759–766. doi: 10.1161/01.RES.0000094744.88220.62 PubMedCrossRefGoogle Scholar
  13. 13.
    Kim J, Kim M, Song JH, Lee HT (2008) Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transpl 14:845–54. doi: 10.1002/lt.21432 PubMedCrossRefGoogle Scholar
  14. 14.
    Lee HT, Gallos G, Nasr SH, Emala CW (2004) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15:102–111PubMedCrossRefGoogle Scholar
  15. 15.
    Chen L, Fredholm BB, Jondal M (2008) Adenosine, through the A1 receptor, inhibits vesicular MHC class I cross-presentation by resting DC. Mol Immunol 45:2247–2254. doi: 10.1016/j.molimm.2007.11.016 PubMedCrossRefGoogle Scholar
  16. 16.
    Yip L, Taylor C, Whiting CC, Fathman CG (2013) Diminished adenosine A1 receptor expression in pancreatic α-cells may contribute to the pathology of type 1 diabetes. Diabetes 62:4208–19. doi: 10.2337/db13-0614 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rosin DL, Robeva A, Woodard RL et al (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186PubMedCrossRefGoogle Scholar
  18. 18.
    Kilpatrick EL, Narayan P, Mentzer RM, Lasley RD (2002) Cardiac myocyte adenosine A2a receptor activation fails to alter cAMP or contractility: role of receptor localization. Am J Physiol Heart Circ Physiol 282:H1035–40. doi: 10.1152/ajpheart.00808.2001 PubMedCrossRefGoogle Scholar
  19. 19.
    Olanrewaju H a, Mustafa SJ (2000) Adenosine A(2A) and A(2B) receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–177. doi: 10.1016/S0306-3623(01)00107-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Fagerlund MJ, Kåhlin J, Ebberyd A et al (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113:1270–9. doi: 10.1097/ALN.0b013e3181fac061 PubMedCrossRefGoogle Scholar
  21. 21.
    Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610PubMedGoogle Scholar
  22. 22.
    Milne GR, Palmer TM (2011) Anti-inflammatory and immunosuppressive effects of the A2A adenosine receptor. ScientificWorldJournal 11:320–39. doi: 10.1100/tsw.2011.22 PubMedCrossRefGoogle Scholar
  23. 23.
    Yang Z, Day YJ, Toufektsian MC et al (2005) Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197. doi: 10.1161/01.CIR.0000163586.62253.A5 PubMedCrossRefGoogle Scholar
  24. 24.
    Shryock JC, Snowdy S, Baraldi PG et al (1998) A2A-adenosine receptor reserve for coronary vasodilation. Circulation 98:711–718. doi: 10.1161/01.CIR.98.7.711 PubMedCrossRefGoogle Scholar
  25. 25.
    Satoh S, Matsumura H, Hayaishi O (1998) Involvement of adenosine A(2A) receptor in sleep promotion. Eur J Pharmacol 351:155–162. doi: 10.1016/S0014-2999(98)00302-1 PubMedCrossRefGoogle Scholar
  26. 26.
    Panther E, Idzko M, Herouy Y et al (2001) Expression and function of adenosine receptors in human dendritic cells. FASEB J 15:1963–70. doi: 10.1096/fj.01-0169com PubMedCrossRefGoogle Scholar
  27. 27.
    Salmon JE, Cronstein BN (1990) Fc gamma receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145:2235–40PubMedGoogle Scholar
  28. 28.
    Cronstein BN, Levin RI, Philips M et al (1992) Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148:2201–2206PubMedGoogle Scholar
  29. 29.
    Haskó G, Kuhel DG, Chen JF et al (2000) Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 14:2065–2074. doi: 10.1096/fj.99-0508com PubMedCrossRefGoogle Scholar
  30. 30.
    Raskovalova T, Lokshin A, Huang X et al (2007) Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8+ and CD4+ T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res 67:5949–5956. doi: 10.1158/0008-5472.CAN-06-4249 PubMedCrossRefGoogle Scholar
  31. 31.
    Mandapathil M, Hilldorfer B, Szczepanski MJ et al (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T Cells. J Biol Chem 285:7176–7186. doi: 10.1074/jbc.M109.047423 PubMedCrossRefGoogle Scholar
  32. 32.
    Cekic C, Sag D, Day Y-J, Linden J (2013) Extracellular adenosine regulates naive T cell development and peripheral maintenance. J Exp Med 210:2693–706. doi: 10.1084/jem.20130249 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–15. doi: 10.1097/ALN.0b013e3181b060f2 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mirabet M, Herrera C, Cordero OJ et al (1999) Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation. J Cell Sci 112(Pt 4):491–502PubMedGoogle Scholar
  35. 35.
    Wakai A, Wang JH, Winter DC et al (2001) Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation. Shock 15:297–301PubMedCrossRefGoogle Scholar
  36. 36.
    Marquardt DL, Walker LL, Heinemann S (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol 152:4508–4515PubMedGoogle Scholar
  37. 37.
    Addi AB, Lefort A, Hua X et al (2008) Modulation of murine dendritic cell function by adenine nucleotides and adenosine: Involvement of the A2B receptor. Eur J Immunol 38:1610–1620. doi: 10.1002/eji.200737781 PubMedCrossRefGoogle Scholar
  38. 38.
    Feoktistov I, Goldstein AE, Ryzhov S et al (2002) Differential expression of adenosine receptors in human endothelial cells: Role of A2B receptors in angiogenic factor regulation. Circ Res 90:531–538. doi: 10.1161/01.RES.0000012203.21416.14 PubMedCrossRefGoogle Scholar
  39. 39.
    Dubey RK, Gillespie DG, Mi Z, Jackson EK (1997) Exogenous and endogenous adenosine inhibits fetal calf serum-induced growth of rat cardiac fibroblasts: role of A2B receptors. Circulation 96:2656–2666. doi: 10.1161/01.CIR.96.8.2656 PubMedCrossRefGoogle Scholar
  40. 40.
    Strohmeier GR, Reppert SM, Lencer WI, Madara JL (1995) The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 270:2387–2394PubMedCrossRefGoogle Scholar
  41. 41.
    Ansari HR, Nadeem A, Talukder M a H et al (2007) Evidence for the involvement of nitric oxide in A2B receptor-mediated vasorelaxation of mouse aorta. Am J Physiol Heart Circ Physiol 292:H719–25. doi: 10.1152/ajpheart.00593.2006 PubMedCrossRefGoogle Scholar
  42. 42.
    Yang D, Koupenova M, Mccrann DJ et al (2008) The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci 105:792–796. doi: 10.1073/pnas.0705563105 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Haskó G, Csóka B, Németh ZH et al (2009) A2B adenosine receptors in immunity and inflammation. Trends Immunol 30:263–270. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Figler RA, Wang G, Srinivasan S et al (2011) Links between Insulin resistance, adenosine A2B receptors, and inflammatory markers in mice and humans. Diabetes 60:669–679. doi: 10.2337/db10-1070 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118:3301–3315. doi: 10.1172/JCI34203 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Zhou Y, Schneider DJ, Morschl E et al (2011) Distinct roles for the A2B adenosine receptor in acute and chronic stages of bleomycin-induced lung injury. J Immunol 186:1097–106. doi: 10.4049/jimmunol.1002907 PubMedCrossRefGoogle Scholar
  47. 47.
    Karmouty-Quintana H, Xia Y, Blackburn MR (2013) Adenosine signaling during acute and chronic disease states. J Mol Med (Berl) 91:173–81. doi: 10.1007/s00109-013-0997-1 CrossRefGoogle Scholar
  48. 48.
    Fishman P, Bar-Yehuda S, Liang BT, Jacobson K a (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366. doi: 10.1016/j.drudis.2011.10.007 PubMedCrossRefGoogle Scholar
  49. 49.
    Borea PA, Varani K, Vincenzi F et al (2015) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102. doi: 10.1124/pr.113.008540 PubMedCrossRefGoogle Scholar
  50. 50.
    Hussain A, Gharanei AM, Nagra AS, Maddock HL (2014) Caspase inhibition via A3 adenosine receptors: a new cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 28:19–32. doi: 10.1007/s10557-013-6500-y PubMedCrossRefGoogle Scholar
  51. 51.
    Baharav E, Bar-Yehuda S, Madi L et al (2005) Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol 32:469–76PubMedGoogle Scholar
  52. 52.
    Fishman P, Bar-Yehuda S, Madi L et al (2006) The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8:R33. doi: 10.1186/ar1887 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shevach EM, Thornton AM (2014) tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 259:88–102. doi: 10.1111/imr.12160 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi: 10.1146/annurev.immunol.21.120601.141122 PubMedCrossRefGoogle Scholar
  55. 55.
    Horwitz D a, Zheng SG, Gray JD (2008) Natural and TGF-beta-induced Foxp3+CD4+ CD25+ regulatory T cells are not mirror images of each other. Trends Immunol 29:429–435. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  56. 56.
    Yamagiwa S, Gray JD, Hashimoto S, Horwitz DA (2001) A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol 166:7282–7289PubMedCrossRefGoogle Scholar
  57. 57.
    Zheng SG, Wang J, Wang P et al (2007) IL-2 is essential for TGF-β to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027. doi: 10.4049/jimmunol.178.4.2018 PubMedCrossRefGoogle Scholar
  58. 58.
    Lu L, Zhou X, Wang J et al (2010) Characterization of protective human CD4+CD25+ FOXP3+ regulatory T cells generated with IL-2, TGF-β and retinoic acid. PLoS One 5:1–12. doi: 10.1371/journal.pone.0015150 Google Scholar
  59. 59.
    Wang J, Huizinga TWJ, Toes REM (2009) De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. J Immunol 183:4119–26. doi: 10.4049/jimmunol.0901065 PubMedCrossRefGoogle Scholar
  60. 60.
    Haddad R, Saldanha-Araujo F (2014) Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? Biomed Res Int 2014:216806. doi: 10.1155/2014/216806 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Melief SM, Schrama E, Brugman MH et al (2013) Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 31:1980–91. doi: 10.1002/stem.1432 PubMedCrossRefGoogle Scholar
  62. 62.
    Cahill EF, Tobin LM, Carty F et al (2015) Jagged-1 is required for the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 6:19. doi: 10.1186/s13287-015-0021-5 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177:8338–47. doi: 10.4049/jimmunol.177.12.8338 PubMedCrossRefGoogle Scholar
  64. 64.
    Scottà C, Esposito M, Fazekasova H et al (2013) Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4+CD25+FOXP3+ T regulatory cell subpopulations. Haematologica 98:1291–1299. doi: 10.3324/haematol.2012.074088 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Long S, Buckner JH (2008) Combination of rapamycin and IL-2 increases de novo induction of human CD4(+)CD25(+)FOXP3(+) T cells. J Autoimmun 30:293–302PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Singh Y, Garden OA, Lang F, Cobb BS (2015) MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of Rictor and mTOR. J Immunol 195:5667–5677. doi: 10.4049/jimmunol.1401875 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Warth SC, Hoefig KP, Hiekel A et al (2015) Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J 34:1195–213, doi: 10.15252/embj.201489589
  68. 68.
    Mandapathil M, Lang S, Gorelik E, Whiteside TL (2009) Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods 346:55–63. doi: 10.1016/j.jim.2009.05.004 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Schuler PJ, Harasymczuk M, Schilling B et al (2011) Separation of human CD4+CD39+ T cells by magnetic beads reveals two phenotypically and functionally different subsets. J Immunol Methods 369:59–68. doi: 10.1016/j.jim.2011.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gautron A-S, Dominguez-Villar M, de Marcken M, Hafler D a (2014) Enhanced suppressor function of TIM-3(+) FoxP3(+) regulatory T cells. Eur J Immunol 44(9):2703–11. doi: 10.1002/eji.201344392 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Uraushihara K, Kanai T, Ko K et al (2003) Regulation of murine inflammatory bowel disease by CD25+ and CD25–CD4+ glucocorticoid-induced TNF receptor family-related gene+ regulatory T cells. J Immunol 171:708–716. doi: 10.4049/jimmunol.171.2.708 PubMedCrossRefGoogle Scholar
  72. 72.
    Mahic M, Henjum K, Yaqub S et al (2008) Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol 38:640–646. doi: 10.1002/eji.200737529 PubMedCrossRefGoogle Scholar
  73. 73.
    Chang CC, Ciubotariu R, Manavalan JS et al (2002) Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243. doi: 10.1038/ni760 PubMedCrossRefGoogle Scholar
  74. 74.
    Fischer K, Voelkl S, Heymann J et al (2005) Isolation and characterization of human antigen-specific TCR alpha beta+ CD4(−)CD8- double-negative regulatory T cells. Blood 105:2828–2835. doi: 10.1182/blood-2004-07-2583 PubMedCrossRefGoogle Scholar
  75. 75.
    Shi Z, Okuno Y, Rifa’i M et al (2009) Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg. Eur J Immunol 39:2106–2119. doi: 10.1002/eji.200939314 PubMedCrossRefGoogle Scholar
  76. 76.
    Brisslert M, Bokarewa M, Larsson P et al (2006) Phenotypic and functional characterization of human CD25+ B cells. Immunology 117:548–557. doi: 10.1111/j.1365-2567.2006.02331.x PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Nagaraj S, Gabrilovich DI (2007) Myeloid-derived suppressor cells. Adv Exp Med Biol 601:213–223PubMedCrossRefGoogle Scholar
  78. 78.
    Hoechst B, Gamrekelashvili J, Manns MP et al (2011) Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 117:6532–6541. doi: 10.1182/blood-2010-11-317321 PubMedCrossRefGoogle Scholar
  79. 79.
    Flores-Borja F, Bosma A, Ng D et al (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5:173ra23. doi: 10.1126/scitranslmed.3005407 PubMedCrossRefGoogle Scholar
  80. 80.
    Sakaguchi S, Wing K, Onishi Y et al (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21:1105–1111. doi: 10.1093/intimm/dxp095 PubMedCrossRefGoogle Scholar
  81. 81.
    Zheng Y, Josefowicz SZ, Kas A et al (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940. doi: 10.1038/nature05563 PubMedCrossRefGoogle Scholar
  82. 82.
    Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296. doi: 10.1084/jem.188.2.287 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Boussiotis VA, Tsai EY, Yunis EJ et al (2000) IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin Invest 105:1317–1325. doi: 10.1172/JCI9918 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Dieckmann D, Plottner H, Berchtold S et al (2001) Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 193:1303–10. doi: 10.1084/jem.193.11.1303 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hsu P, Santner-Nanan B, Hu M et al (2015) IL-10 potentiates differentiation of human induced regulatory T cells via STAT3 and Foxo1. J Immunol 195:3665–3674. doi: 10.4049/jimmunol.1402898 PubMedCrossRefGoogle Scholar
  86. 86.
    Horwitz DA, Zheng SG, Gray JD (2003) The role of the combination of IL-2 and TGF-β or IL-10 in the generation and function of CD4+ CD25+ and CD8+regulatory T cell subsets. J Leukoc Biol 74:471–478. doi: 10.1189/jlb.0503228 PubMedCrossRefGoogle Scholar
  87. 87.
    Dieckmann D, Bruett CH, Ploettner H et al (2002) Human CD4(+)CD25(+) regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells [corrected]. J Exp Med 196:247–253. doi: 10.1084/jem.20020642 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Collison LW, Workman CJ, Kuo TT et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569. doi: 10.1038/nature06306 PubMedCrossRefGoogle Scholar
  89. 89.
    Shuai X, Wei-Min L, Tong Y et al (2015) Expression of IL-37 contributes to the immunosuppressive property of human CD4+CD25+ regulatory T cells. Sci Rep 5:14478. doi: 10.1038/srep14478 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Agarwal A, Fanelli G, Letizia M et al (2014) Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol 5:555. doi: 10.3389/fimmu.2014.00555 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Levings MK, Sangregorio R, Sartirana C et al (2002) Human CD25+CD4+ T suppressor cell clones produce transforming growth factor, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 196:1335–1346. doi: 10.1084/jem.20021139 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–44. doi: 10.1084/jem.194.5.629 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Annunziato F, Cosmi L, Liotta F et al (2002) Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med 196:379–387. doi: 10.1084/jem.20020110 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kullberg MC, Hay V, Cheever AW et al (2005) TGF-beta1 production by CD4+ CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur J Immunol 35:2886–95. doi: 10.1002/eji.200526106 PubMedCrossRefGoogle Scholar
  96. 96.
    Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21:589–601. doi: 10.1016/j.immuni.2004.09.002 PubMedCrossRefGoogle Scholar
  97. 97.
    Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–65. doi: 10.1084/jem.20062512 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Dwyer KM, Hanidziar D, Putheti P et al (2010) Expression of CD39 by human peripheral blood CD4+CD25 + T cells denotes a regulatory memory phenotype. Am J Transplant 10:2410–2420. doi: 10.1111/j.1600-6143.2010.03291.x PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: Hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232. doi: 10.1182/blood-2006-12-064527 PubMedCrossRefGoogle Scholar
  100. 100.
    Kobie JJ, Shah PR, Yang L et al (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5’-adenosine monophosphate to adenosine. J Immunol 177:6780–6786. doi: 10.4049/jimmunol.177.10.6780 PubMedCrossRefGoogle Scholar
  101. 101.
    Horenstein AL, Chillemi A, Zaccarello G et al (2013) A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2, e26246. doi: 10.4161/onci.26246 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  103. 103.
    Kaku H, Cheng KF, Al-Abed Y, Rothstein TL (2014) A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. J Immunol 193:5904–13. doi: 10.4049/jimmunol.1400336 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Saze Z, Schuler PJ, Hong C-S et al (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122:9–18. doi: 10.1182/blood-2013-02-482406 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Morandi F, Horenstein AL, Chillemi A et al (2015) CD56brightCD16- NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting autologous CD4+ T cell proliferation. J Immunol 195:965–72. doi: 10.4049/jimmunol.1500591 PubMedCrossRefGoogle Scholar
  106. 106.
    Clayton A, Al-Taei S, Webber J et al (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683. doi: 10.4049/jimmunol.1003884 PubMedCrossRefGoogle Scholar
  107. 107.
    Schuler PJ, Saze Z, Hong CS et al (2014) Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol 177:531–543. doi: 10.1111/cei.12354 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223. doi: 10.2174/092986711798184334 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mandapathil M, Szczepanski MJ, Szajnik M et al (2010) Adenosine and prostaglandin e2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem 285:27571–27580. doi: 10.1074/jbc.M110.127100 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hoskin DW, Mader JS, Furlong SJ et al (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (review). Int J Oncol 32:527–535PubMedGoogle Scholar
  111. 111.
    Dwyer KM, Deaglio S, Gao W et al (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180. doi: 10.1007/s11302-006-9050-y PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ring S, Pushkarevskaya A, Schild H et al (2015) Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J Immunol 194:3735–44. doi: 10.4049/jimmunol.1401434 PubMedCrossRefGoogle Scholar
  113. 113.
    Narravula S, Lennon PF, Mueller BU, Colgan SP (2000) Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 165:5262–5268. doi: 10.4049/jimmunol.165.9.5262 PubMedCrossRefGoogle Scholar
  114. 114.
    Ohta A, Kini R, Ohta A et al (2012) The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190. doi: 10.3389/fimmu.2012.00190 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Ehrentraut H, Westrich JA, Eltzschig HK, Clambey ET (2012) Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS One 7(2):e32416. doi: 10.1371/journal.pone.0032416 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Friedenstein AJ et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340. doi: 10.1097/00007890-197404000-00001 PubMedCrossRefGoogle Scholar
  117. 117.
    Caplan A (1991) Mesenchymal stem cells. J Orthop Res 9:641–50. doi: 10.1002/jor.1100090504 PubMedCrossRefGoogle Scholar
  118. 118.
    Zuk P a, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–28. doi: 10.1089/107632701300062859 PubMedCrossRefGoogle Scholar
  119. 119.
    Toma JG, Akhavan M, Fernandes KJ et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–84. doi: 10.1038/ncb0901-778 PubMedCrossRefGoogle Scholar
  120. 120.
    De Bari C, Dell’accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942. doi: 10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P PubMedCrossRefGoogle Scholar
  121. 121.
    Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 22:105–110. doi: 10.1634/stemcells.21-1-111 CrossRefGoogle Scholar
  122. 122.
    Sabatini F, Petecchia L, Tavian M et al (2005) Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig 85:962–971. doi: 10.1038/labinvest.3700300 PubMedCrossRefGoogle Scholar
  123. 123.
    da Silva ML, Caplan AI, Nardi NB et al (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–99. doi: 10.1634/stemcells.2007-1122 CrossRefGoogle Scholar
  124. 124.
    Covas DT, Panepucci R a, Fontes AM et al (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146 + perivascular cells and fibroblasts. Exp Hematol 36:642–654. doi: 10.1016/j.exphem.2007.12.015 PubMedCrossRefGoogle Scholar
  125. 125.
    Steinert AF, Rackwitz L, Gilbert F et al (2012) Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 1:237–47. doi: 10.5966/sctm.2011-0036 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11:232–46. doi: 10.1038/nrcardio.2014.9 PubMedCrossRefGoogle Scholar
  127. 127.
    Rosado-De-Castro PH, Pimentel-Coelho PM, da Fonseca LMB et al (2013) The rise of cell therapy trials for stroke: review of published and registered studies. Stem Cells Dev 22:2095–111. doi: 10.1089/scd.2013.0089 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C (2012) Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 1:59–63. doi: 10.5966/sctm.2011-0017 PubMedCrossRefGoogle Scholar
  129. 129.
    Sokal EM (2014) Treating inborn errors of liver metabolism with stem cells: current clinical development. J Inherit Metab Dis 37:535–539. doi: 10.1007/s10545-014-9691-x PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Munir H, Mcgettrick HM (2015) Mesenchymal stem cells therapy for autoimmune disease: risks and rewards. Stem Cells Dev 24:2091–2100. doi: 10.1089/scd.2015.0008 PubMedCrossRefGoogle Scholar
  131. 131.
    Hahn JY, Cho HJ, Kang HJ et al (2008) Pre-treatment of mesenchymal atem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol 51:933–943. doi: 10.1016/j.jacc.2007.11.040 PubMedCrossRefGoogle Scholar
  132. 132.
    Khubutiya MS, Vagabov AV, Temnov AA, Sklifas AN (2014) Paracrine mechanisms of proliferative, anti-apoptotic and anti-inflammatory effects of mesenchymal stromal cells in models ofacute organ injury. Cytotherapy 16:579–585. doi: 10.1016/j.jcyt.2013.07.017 PubMedCrossRefGoogle Scholar
  133. 133.
    Carvalho JL, Braga VBA, Melo MB et al (2013) Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. J Cell Mol Med 17:617–625. doi: 10.1111/jcmm.12036 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Hu X, Yu SP, Fraser JL et al (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808. doi: 10.1016/j.jtcvs.2007.07.071 PubMedCrossRefGoogle Scholar
  135. 135.
    Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843. doi: 10.1182/blood.V99.10.3838 PubMedCrossRefGoogle Scholar
  136. 136.
    Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–8. doi: 10.1016/S0301-472X(01)00769-X PubMedCrossRefGoogle Scholar
  137. 137.
    Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441. doi: 10.1016/S0140-6736(04)16104-7 PubMedCrossRefGoogle Scholar
  138. 138.
    Frassoni F, Labopin M, Bacigalupo A et al (2002) Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hematopoietic stem cell transplants, reduce acute and chronic graft-versus-host disease: a matched pair analysis. Bone Marrow Transplant 29:s2, abstractGoogle Scholar
  139. 139.
    Martin P, Uberti J, Soiffer R et al (2010) Prochymal improves response rates in patients with steroid-refractory acute graft versus host disease (SR-GVHD) involving the liver and gut: results of a randomized, placebo-controlled, multicenter phase III trial in GVHD. Biol Blood Marrow Trasnplant 16:S169–S170CrossRefGoogle Scholar
  140. 140.
    Cyranoski D (2012) Canada approves stem cell product. Nat Biotechnol 30:571CrossRefGoogle Scholar
  141. 141.
    Vaes B, Van’t Hof W, Deans R, Pinxteren J (2012) Application of Multistem® allogeneic cells for immunomodulatory therapy: clinical progress and pre-clinical challenges in prophylaxis for graft versus host disease. Front Immunol 3:345. doi: 10.3389/fimmu.2012.00345 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Klyushnenkova E, Mosca JD, Zernetkina V et al (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12:47–57. doi: 10.1007/s11373-004-8183-7 PubMedCrossRefGoogle Scholar
  143. 143.
    Najar M, Raicevic G, Kazan HF et al (2012) Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev Rep 8:1188–1198. doi: 10.1007/s12015-012-9408-1 CrossRefGoogle Scholar
  144. 144.
    Le Blanc K, Tammik L, Sundberg B et al (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20. doi: 10.1046/j.1365-3083.2003.01176.x PubMedCrossRefGoogle Scholar
  145. 145.
    Ghannam S, Pène J, Torcy-Moquet G et al (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312. doi: 10.4049/jimmunol.0902007 PubMedCrossRefGoogle Scholar
  146. 146.
    Luz-Crawford P, Kurte M, Bravo-Alegría J et al (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther 4:65. doi: 10.1186/scrt216 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. doi: 10.1182/blood-2004-04-1559 PubMedCrossRefGoogle Scholar
  148. 148.
    Saldanha-Araujo F, Haddad R, Malmegrim De Farias KCR et al (2012) Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: Roles of canonical and non-canonical NF-kB signalling. J Cell Mol Med 16:1232–1244. doi: 10.1111/j.1582-4934.2011.01391.x PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Jiang X-X, Zhang Y, Liu B et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120–4126. doi: 10.1182/blood-2004-02-0586.Supported PubMedCrossRefGoogle Scholar
  150. 150.
    Maccario R, Podestà M, Moretta A et al (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90:516–525PubMedGoogle Scholar
  151. 151.
    Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087Google Scholar
  152. 152.
    Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L (2009) MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113:6576–6583. doi: 10.1182/blood-2009-02-203943 PubMedCrossRefGoogle Scholar
  153. 153.
    Zhang W, Ge W, Li C et al (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13:263–71. doi: 10.1089/154732804323099190 PubMedCrossRefGoogle Scholar
  154. 154.
    Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–98. doi: 10.1634/stemcells.2005-0008 PubMedCrossRefGoogle Scholar
  155. 155.
    Sotiropoulou P a, Perez S a, Gritzapis AD et al (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24:74–85. doi: 10.1634/stemcells.2004-0359 PubMedCrossRefGoogle Scholar
  156. 156.
    Corcione A, Benvenuto F, Ferretti E et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372. doi: 10.1182/blood-2005-07-2657 PubMedCrossRefGoogle Scholar
  157. 157.
    Tabera S, Pérez-Simón JA, Díez-Campelo M et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93:1301–1309. doi: 10.3324/haematol.12857 PubMedCrossRefGoogle Scholar
  158. 158.
    Comoli P, Ginevri F, Maccario R et al (2008) Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23:1196–1202. doi: 10.1093/ndt/gfm740 PubMedCrossRefGoogle Scholar
  159. 159.
    Rosado MM, Bernardo ME, Scarsella M et al (2015) Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev 24:93–103. doi: 10.1089/scd.2014.0155 PubMedCrossRefGoogle Scholar
  160. 160.
    Mu CY, Huang JA, Chen Y et al (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28:682–688. doi: 10.1007/s12032-010-9515-2 PubMedCrossRefGoogle Scholar
  161. 161.
    He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5:13110. doi: 10.1038/srep13110 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Chang C-J, Yen M-L, Chen Y-C et al (2006) Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells 24:2466–2477. doi: 10.1634/stemcells.2006-0071 PubMedCrossRefGoogle Scholar
  163. 163.
    Munn DH, Mellor AL (2013) Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 34:137–143. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  164. 164.
    English K, Ryan JM, Tobin L et al (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–60. doi: 10.1111/j.1365-2249.2009.03874.x PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Baratelli F, Lin Y, Zhu L et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490. doi: 10.4049/jimmunol.175.3.1483 PubMedCrossRefGoogle Scholar
  166. 166.
    Ryan JM, Barry F, Murphy JM, Mahon BP (2007) Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363. doi: 10.1111/j.1365-2249.2007.03422.x PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Maria Spaggiari G, Moretta L, Spaggiari GM, Moretta L (2013) Cellular and molecular interactions of mesenchymal stem cells in innate immunity. Immunol Cell Biol 91:27–31. doi: 10.1038/icb.2012.62 CrossRefGoogle Scholar
  168. 168.
    Meisel R, Zibert A, Laryea M et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621. doi: 10.1182/blood-2003-11-3909 PubMedCrossRefGoogle Scholar
  169. 169.
    Chinnadurai R, Copland IB, Patel SR, Galipeau J (2014) IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells. J Immunol 192:1491–501. doi: 10.4049/jimmunol.1301828 PubMedCrossRefGoogle Scholar
  170. 170.
    Tomchuck SL, Zwezdaryk KJ, Coffelt SB et al (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26:99–107. doi: 10.1634/stemcells.2007-0563 PubMedCrossRefGoogle Scholar
  171. 171.
    Meuwissen H, Pollara B, Pickering R (1975) Combined immunodeficiency disease associated with adenosine deaminase deficiency. Report on a workshop held in Albany, New York, October 1, 1973. J Pediatr 86:169–81PubMedCrossRefGoogle Scholar
  172. 172.
    Kumar V (2013) Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 9:145–165. doi: 10.1007/s11302-012-9349-9 PubMedCrossRefGoogle Scholar
  173. 173.
    Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605Google Scholar
  174. 174.
    Ohta A, Sitkovsky M (2014) Extracellular adenosine-mediated modulation of regulatory T cells. Front Immunol 5:304. doi: 10.3389/fimmu.2014.00304 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Saldanha-Araujo F, Ferreira FIS, Palma PV et al (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7:66–74. doi: 10.1016/j.scr.2011.04.001 PubMedCrossRefGoogle Scholar
  176. 176.
    Kerkelä E, Laitinen A, Räbinä J et al (2016) Adenosinergic immunosuppression by human mesenchymal stromal cells requires co-operation with T cells. Stem Cells 34:781–90PubMedCrossRefGoogle Scholar
  177. 177.
    Saldanha-Araujo F, Panepucci R a (2011) CD39 expression in mesenchymal stromal cells. J Immunother 34:568. doi: 10.1097/CJI.0b013e3182298c8f PubMedCrossRefGoogle Scholar
  178. 178.
    Sattler C, Steinsdoerfer M, Offers M et al (2010) Inhibition of T cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39/CD73 coexpression and adenosine generation. Cell Transplant 20:1221–1230. doi: 10.3727/096368910X546553\rct0203sattler PubMedCrossRefGoogle Scholar
  179. 179.
    Lee JJ, Jeong HJ, Kim MK et al (2013) CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function. Purinergic Signal 10(2):357–365. doi: 10.1007/s11302-013-9385-0 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Sundin M, D’Arcy P, Johansson CC et al (2011) Multipotent mesenchymal stromal cells express FoxP3: a marker for the immunosuppressive capacity? J Immunother 34:336–42. doi: 10.1097/CJI.0b013e318217007c PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Chatterjee D, Tufa D, Baehre H et al (2014) Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells. Blood 123:594–5PubMedCrossRefGoogle Scholar
  182. 182.
    Cavaliere F, Donno C, D’Ambrosi N (2015) Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 9:211. doi: 10.3389/fncel.2015.00211 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Li P, Gao Y, Cao J et al (2015) CD39(+) regulatory T cells attenuate allergic airway inflammation. Clin Exp Allergy 45:1126–37. doi: 10.1111/cea.12521 PubMedCrossRefGoogle Scholar
  184. 184.
    Yoshida O, Dou L, Kimura S et al (2015) CD39 deficiency in murine liver allografts promotes inflammatory injury and immune-mediated rejection. Transpl Immunol 32:76–83. doi: 10.1016/j.trim.2015.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Ehrentraut H, Clambey ET, Mcnamee EN et al (2013) CD73+ regulatory T cells contribute to adenosine-mediated resolution of acute lung injury. FASEB J 27:2207–19. doi: 10.1096/fj.12-225201 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Wang L, Fan J, Chen S et al (2013) Graft-versus-host disease is enhanced by selective CD73 blockade in mice. PLoS One 8(3), e58397. doi: 10.1371/journal.pone.0058397 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Chen X, Shao H, Zhi Y et al (2016) CD73 pathway contributes to the immunosuppressive ability of mesenchymal stem cells (MSCs) in intraocular autoimmune responses. Stem Cells Dev 25:337–46PubMedCrossRefGoogle Scholar
  188. 188.
    Amarnath S, Foley JE, Farthing DE et al (2015) Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human th1 cells in vivo. Stem Cells 33:1200–1212. doi: 10.1002/stem.1934 PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Burr SP, Dazzi F, Garden O a (2013) Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? Immunol Cell Biol 91:12–8. doi: 10.1038/icb.2012.60 PubMedCrossRefGoogle Scholar
  190. 190.
    Kinsey GR, Huang L, Jaworska K et al (2012) Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J Am Soc Nephrol 23:1528–37. doi: 10.1681/ASN.2012010070 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Kinsey GR, Sharma R, Okusa MD (2013) Regulatory T cells in AKI. J Am Soc Nephrol 24:1720–6. doi: 10.1681/ASN.2013050502 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Lim J-Y, Park M-J, Im K-I et al (2013) Combination cell therapy using mesenchymal stem cells and regulatory T cells provides a synergistic immunomodulatory effect associated with reciprocal regulation of Th1/Th2 and Th17/Treg cells in a murine acute graft-versus-host disease model. Cell Transplant 23:703–714. doi: 10.3727/096368913X664577 PubMedCrossRefGoogle Scholar
  193. 193.
    Zhou Y, Singh AK, Hoyt RF et al (2014) Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. J Thorac Cardiovasc Surg 148:1131–7. doi: 10.1016/j.jtcvs.2014.06.029 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Cronstein B (2010) How does methotrexate suppress inflammation? Clin Exp Rheumatol 28(5 Suppl 61):S21–S23PubMedGoogle Scholar
  195. 195.
    Kreth S, Ledderose C, Luchting B et al (2010) Immunomodulatory properties of pentoxifylline are mediated via adenosine-dependent pathways. Shock 34:10–6. doi: 10.1097/SHK.0b013e3181cdc3e2 PubMedCrossRefGoogle Scholar
  196. 196.
    Cronstein BN, Montesinos MC, Weissmann G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A 96:6377–81. doi: 10.1073/pnas.96.11.6377 PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Horrigan LA, Kelly JP, Connor TJ (2006) Immunomodulatory effects of caffeine: friend or foe? Pharmacol Ther 111:877–892. doi: 10.1016/j.pharmthera.2006.02.002 PubMedCrossRefGoogle Scholar
  198. 198.
    Massie BM, O’Connor CM, Metra M et al (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363:1419–1428. doi: 10.1056/NEJMoa0912613 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Martha de Oliveira Bravo
    • 1
  • Juliana Lott Carvalho
    • 2
  • Felipe Saldanha-Araujo
    • 1
  1. 1.School of Health SciencesUniversity of BrasiliaBrasiliaBrazil
  2. 2.Genomic Sciences and Biotechnology CenterCatholic University of BrasiliaBrasiliaBrazil

Personalised recommendations