Advertisement

Purinergic Signalling

, Volume 12, Issue 3, pp 489–496 | Cite as

Co-localization of Pirt protein and P2X2 receptors in the mouse enteric nervous system

  • Wei Guo
  • Qian-Qian Sui
  • Xiao-Fei Gao
  • Ji-Feng Feng
  • Jiao Zhu
  • Cheng HeEmail author
  • Gillian E. Knight
  • Geoffrey Burnstock
  • Zhenghua XiangEmail author
Original Article

Abstract

P2X2 receptors, with other P2X receptor subtypes, have an important role mediating synaptic transmission in regulating the functions of the gastrointestinal tract. Our recent work has found a new regulator of P2X receptor function, called phosphoinositide-interacting regulator of transient receptor potential channels (Pirt). In the present work, we have shown that Pirt immunoreactivity was localized in nerve cell bodies and nerve fibers in the myenteric plexus of the stomach, ileum, proximal, and distal colon and in the submucosal plexus of the jejunum, ileum, proximal, and distal colon. Almost all the Pirt-immunoreactive (ir) neurons were also P2X2-ir, and co-immunoprecipitation experiments have shown that Pirt co-precipitated with the anti-P2X2 antibody. This work provides detailed information about the expression of Pirt in the gut and its co-localization with P2X2, indicating its potential role in influencing P2X2 receptor function.

Keywords

Pirt protein P2X2 receptor Enteric nervous system Mouse 

Notes

Acknowledgments

We appreciated Dr. Xinzhong Dong and Zong-Xiang Tang for providing Pirt knockout (−/−) mice. This work was supported by the National Natural Science Foundation of the People’s Republic of China (81471260 to Z. Xiang).

References

  1. 1.
    Burnstock G (2012) P2X receptors in the gut. Wiley Interdisciplinary Reviews. Membr Transport and Signaling 1(3):269–279CrossRefGoogle Scholar
  2. 2.
    Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86CrossRefPubMedGoogle Scholar
  3. 3.
    Galligan JJ (2004) Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol 141(8):1294–1302CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8(2):107–123CrossRefPubMedGoogle Scholar
  5. 5.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067CrossRefPubMedGoogle Scholar
  6. 6.
    Castelucci P et al (2002) The distribution of purine P2X(2) receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117(5):415–422CrossRefPubMedGoogle Scholar
  7. 7.
    Van Nassauw L et al (2002) Neurochemical identification of enteric neurons expressing P2X(3) receptors in the guinea-pig ileum. Histochem Cell Biol 118(3):193–203PubMedGoogle Scholar
  8. 8.
    Poole DP et al (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101(1–2):39–47CrossRefPubMedGoogle Scholar
  9. 9.
    Galligan JJ (2002) Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol 2(6):623–629CrossRefPubMedGoogle Scholar
  10. 10.
    Hu HZ et al (2001) P2X(7) receptors in the enteric nervous system of guinea-pig small intestine. J Comp Neurol 440(3):299–310CrossRefPubMedGoogle Scholar
  11. 11.
    Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121(3):169–179CrossRefPubMedGoogle Scholar
  12. 12.
    Yu Q et al (2009) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133(2):177–188CrossRefPubMedGoogle Scholar
  13. 13.
    Ruan HZ, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system of mouse. Cell Tissue Res 319(2):191–200CrossRefPubMedGoogle Scholar
  14. 14.
    Koles L et al (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377(1):1–33CrossRefPubMedGoogle Scholar
  15. 15.
    Kim AY et al (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133(3):475–485CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang C et al (2015) Pirt contributes to uterine contraction-induced pain in mice. Mol Pain 11:57CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Patel KN, Liu Q, Meeker S, Undem BJ, Dong X (2011) Pirt, a TRPV1 modulator, is required for histamine-dependent and -independent itch. PLoS One 6(e20559)Google Scholar
  18. 18.
    Tang Z et al (2013) Pirt functions as an endogenous regulator of TRPM8. Nat Commun 4:2179PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gao XF et al (2015) Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat Commun 6:7650CrossRefPubMedGoogle Scholar
  20. 20.
    Ghosh AP et al (2012) CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS One 7(6), e39586CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mo G et al (2009) Subtype-specific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors. Molecular Pain 5(1):47CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao Q et al (2007) PIP(2) regulates the ionic current of P2X receptors and P2X(7) receptor-mediated cell death. Channels (Austin) 1(1):46–55CrossRefGoogle Scholar
  23. 23.
    Zhao Q, Logothetis DE, Seguela P (2007) Regulation of ATP-gated P2X receptors by phosphoinositides. Pflugers Arch 455(1):181–185CrossRefPubMedGoogle Scholar
  24. 24.
    Ase AR et al (2010) Modulation of heteromeric P2X1/5 receptors by phosphoinositides in astrocytes depends on the P2X1 subunit. J Neurochem 113(6):1676–1684PubMedGoogle Scholar
  25. 25.
    Fujiwara Y, Kubo Y (2006) Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J Physiol 576(Pt 1):135–149CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Burnstock G (2001) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22(4):182–188CrossRefPubMedGoogle Scholar
  27. 27.
    Shinoda M, Feng B, Gebhart GF (2009) Peripheral and central P2X receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology 137(6):2096–2104CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xiang Z, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122(2):111–119CrossRefPubMedGoogle Scholar
  29. 29.
    Guo W et al (2013) Developmental expression of P2X5 receptors in the mouse prenatal central and peripheral nervous systems. Purinergic Signal 9(2):239–248CrossRefPubMedGoogle Scholar
  30. 30.
    Mizuno MS (2012) Expression of the P2X2 receptor in different classes of ileum myenteric neurons in the female obese ob/ob mouse. World J Gastroenterol 18(34):4693CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wei Guo
    • 1
    • 2
  • Qian-Qian Sui
    • 2
  • Xiao-Fei Gao
    • 2
  • Ji-Feng Feng
    • 2
  • Jiao Zhu
    • 2
  • Cheng He
    • 2
    Email author
  • Gillian E. Knight
    • 3
  • Geoffrey Burnstock
    • 3
    • 4
  • Zhenghua Xiang
    • 2
    Email author
  1. 1.School of Optometry and Ophthalmology and Eye HospitalWenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of EducationSecond Military Medical UniversityShanghaiPeople’s Republic of China
  3. 3.Autonomic Neuroscience CentreUniversity College Medical SchoolLondonUK
  4. 4.Department of Pharmacology and TherapeuticsThe University of MelbourneMelbourneAustralia

Personalised recommendations