Advertisement

Purinergic Signalling

, Volume 10, Issue 2, pp 357–365 | Cite as

CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function

  • Jong Joo Lee
  • Hyun Jeong Jeong
  • Mee Kum KimEmail author
  • Won Ryang Wee
  • Won Woo Lee
  • Seung U. Kim
  • Changmin Sung
  • Yung Hun Yang
Brief Communication

Abstract

This study investigated the immune-modulatory effects of human bone marrow-derived mesenchymal stem cells (hBMSCs) on human Th17 cell function through the CD39-mediated adenosine-producing pathway. The suppressive effects of hBMSCs were evaluated by assessing their effects on the proliferation of Th17 cells and the secretion of interferon (IFN)-γ and interleukin (IL)-17A by Th17 cells with or without anti-CD39 treatment. Changes in CD39 and CD73 expression on the T cells with or without co-culture of hBMSCs were evaluated by flow cytometry. hBMSCs effectively suppressed the proliferation of Th17 cells and the secretion of both IL-17A and IFN-γ from Th17 cells using by both flow cytometry and ELISA, while anti-CD39 treatment significantly reduced the inhibitory effects of hBMSCs on the proliferation and secretion of the Th17 cells. The hBMSCs induced increased expression of the CD39 and CD73 on T cells correlated with the suppressive function of hBMSCs, which was accompanied by increased adenosine production. Our data suggests that hBMSCs can effectively suppress immune responses of the Th17 cells via the CD39-CD73-mediated adenosine-producing pathway.

Keywords

Bone marrow-derived mesenchymal stem cells Th17 cells CD39 CD73 Interleukin-17 Interferon-γ Adenosine 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF 2010-0010629 and NRF 2011-0004128)

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

11302_2013_9385_Fig6_ESM.jpg (394 kb)
Supplementary Fig. S1

The inhibitory effects of either 1-D/L MT or 1400w dihydrochloride on BMSCs-mediated suppression of the T cell proliferation. NC indicates negative control, PC indicates positive control, M indicates BMSCs, and T indicates Th17 cells. (n=3) (JPEG 393 KB)

11302_2013_9385_MOESM1_ESM.tif (2.2 mb)
High resolution image (TIFF 2255 kb)
11302_2013_9385_Fig7_ESM.jpg (748 kb)
Supplementary Fig. S2

The inhibitory effects of either 1-D/L MT or 1400w dihydrochloride on BMSCs-mediated suppression of the secretion of IFN-γ/IL-17 by Th 17 cells, which was lesser than the blocking effect of anti-CD39 treatment. M indicates BMSCs, and T indicates Th17 cells. (n=3) (JPEG 747 KB)

11302_2013_9385_MOESM2_ESM.tif (6 mb)
High resolution image (TIFF 6164 kb)
11302_2013_9385_Fig8_ESM.jpg (359 kb)
ESM 3

(JPEG 359 KB)

11302_2013_9385_MOESM3_ESM.tif (1.7 mb)
High resolution image (TIFF 1741 kb)

References

  1. 1.
    Bassi ÊJ (2011) Immune regulatory properties of multipotent mesenchymal stromal cells: where do we stand? World J Stem Cells 3:1PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bassi ÊJ, Almeida DC, Moraes-Vieira PMM, Câmara NOS (2011) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev 2:329–42Google Scholar
  3. 3.
    Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol ther: J Am Soc Gene Ther 20:14–20CrossRefGoogle Scholar
  4. 4.
    Uccelli A, Prockop DJ (2010) Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? Curr Opin Immunol 22:768–774PubMedCrossRefGoogle Scholar
  5. 5.
    Meisel R, Zibert A, Laryea M, Gobel U, Daubener W et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621PubMedCrossRefGoogle Scholar
  6. 6.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398PubMedCrossRefGoogle Scholar
  7. 7.
    Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB et al (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Sattler C, Steinsdoerfer M, Offers M, Fischer E, Schierl R et al (2011) Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplant 20:1221–1230PubMedCrossRefGoogle Scholar
  9. 9.
    Saldanha-Araujo F, Ferreira F, Palma P, Araujo A, Queiroz R et al (2011) Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res 7:66–74PubMedCrossRefGoogle Scholar
  10. 10.
    Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683PubMedCrossRefGoogle Scholar
  11. 11.
    Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Luger D, Silver PB, Tang J, Cua D, Chen Z et al (2008) Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J Exp Med 205:799–810PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL et al (2007) TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med 13:711–718PubMedCrossRefGoogle Scholar
  14. 14.
    Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS et al (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS One 2:e1272PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Moreno-Fernandez ME, Rueda CM, Rusie LK, Chougnet CA (2011) Regulatory T cells control HIV replication in activated T cells through a cAMP-dependent mechanism. Blood 117:5372–5380PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Park MJ, Park HS, Cho ML, Oh HJ, Cho YG et al (2011) Transforming growth factor beta-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 63:1668–1680PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang X, Ren X, Li G, Jiao C, Zhang L et al (2011) Mesenchymal stem cells ameliorate experimental autoimmune uveoretinitis by comprehensive modulation of systemic autoimmunity. Invest Ophthalmol Vis Sci 52:3143–3152PubMedCrossRefGoogle Scholar
  18. 18.
    Darlington P, Boivin M, Renoux C, Francois M, Galipeau J et al (2010) Reciprocal Th1 and Th17 regulation by mesenchymal stem cells: implication for multiple sclerosis. Ann Neurol 68:540–545PubMedCrossRefGoogle Scholar
  19. 19.
    Ghannam S, Pene J, Torcy-Moquet G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312PubMedCrossRefGoogle Scholar
  20. 20.
    Groh ME, Maitra B, Szekely E, Koc ON (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33:928–934PubMedCrossRefGoogle Scholar
  21. 21.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRefGoogle Scholar
  22. 22.
    Guo Z, Zheng C, Chen Z, Gu D, Du W et al (2009) Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur J Immunol 39:2840–2849PubMedCrossRefGoogle Scholar
  23. 23.
    Chiesa S, Morbelli S, Morando S, Massollo M, Marini C et al (2011) Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A 108:17384–17389PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Choi YS, Jeong JA, Lim DS (2012) Mesenchymal stem cell-mediated immature dendritic cells induce regulatory T cell-based immunosuppressive effect. Immunol Invest 41:214–229PubMedCrossRefGoogle Scholar
  25. 25.
    De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591PubMedCrossRefGoogle Scholar
  26. 26.
    Duffy MM, Ritter T, Ceredig R, Griffin MD (2011) Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2:34PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Saldanha-Araujo F, Panepucci RA (2011) CD39 expression in mesenchymal stromal cells. J Immunother 34:568PubMedCrossRefGoogle Scholar
  28. 28.
    Katsifis GE, Rekka S, Moutsopoulos NM, Pillemer S, Wahl SM (2009) Systemic and local interleukin-17 and linked cytokines associated with Sjogren’s syndrome immunopathogenesis. Am J Pathol 175:1167–1177PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Sasaki JR, Zhang Q, Schwacha MG (2011) Burn induces a Th-17 inflammatory response at the injury site. Burns 37:646–651PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jong Joo Lee
    • 1
    • 2
  • Hyun Jeong Jeong
    • 2
  • Mee Kum Kim
    • 1
    • 2
    Email author
  • Won Ryang Wee
    • 1
    • 2
  • Won Woo Lee
    • 3
  • Seung U. Kim
    • 4
    • 5
  • Changmin Sung
    • 6
  • Yung Hun Yang
    • 7
  1. 1.Department of OphthalmologySeoul National University College of MedicineSeoulSouth Korea
  2. 2.Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye CenterSeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
  3. 3.Department of Microbiology and ImmunologySeoul National University College of MedicineSeoulSouth Korea
  4. 4.Medical Research InstituteChung-Ang University College of MedicineSeoulSouth Korea
  5. 5.Division of Neurology, Department of MedicineUniversity of British ColumbiaVancouverCanada
  6. 6.Interdisciplinary Program of BioengineeringSeoul National UniversitySeoulSouth Korea
  7. 7.Department of Microbial Engineering, College of EngineeringKonkuk UniversitySeoulSouth Korea

Personalised recommendations