Purinergic Signalling

, Volume 9, Issue 3, pp 325–336 | Cite as

Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A2A and A3 receptors

  • Fernanda da Rocha Lapa
  • Ana Paula Ligeiro de Oliveira
  • Beatriz Golega Accetturi
  • Isabelli de Oliveira Martins
  • Helory Vanni Domingos
  • Daniela de Almeida Cabrini
  • Wothan Tavares de Lima
  • Adair Roberto Soares Santos
Original Article


Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001–10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.


Inosine Adenosine receptors Allergy Ovalbumin 



This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), Programa de Reestruturação e Expansão das Universidades Federais (REUNI); Programa Nacional de Cooperação Acadêmica (PROCAD) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Conflicts of interest



  1. 1.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMedGoogle Scholar
  2. 2.
    Caruso M, Holgate ST, Polosa R (2006) Adenosine signalling in airways. Curr Opin Pharmacol 6(3):251–256PubMedCrossRefGoogle Scholar
  3. 3.
    Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552PubMedGoogle Scholar
  4. 4.
    Gomez G, Sitkovsky MV (2003) Differential requirement for A2a and A3 adenosine receptors for the protective effect of inosine in vivo. Blood 102(13):4472–4478PubMedCrossRefGoogle Scholar
  5. 5.
    Hasko G, Sitkovsky MV, Szabo C (2004) Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol Sci 25(3):152–157PubMedCrossRefGoogle Scholar
  6. 6.
    Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26(6):299–304PubMedCrossRefGoogle Scholar
  7. 7.
    Spicuzza L, Di Maria G, Polosa R (2006) Adenosine in the airways: implications and applications. Eur J Pharmacol 533(1–3):77–88PubMedCrossRefGoogle Scholar
  8. 8.
    Blackburn MR (2003) Too much of a good thing: adenosine overload in adenosine-deaminase-deficient mice. Trends Pharmacol Sci 24(2):66–70PubMedCrossRefGoogle Scholar
  9. 9.
    Cushley MJ, Tattersfield AE, Holgate ST (1983) Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 15(2):161–165PubMedCrossRefGoogle Scholar
  10. 10.
    Oosterhoff Y, de Jong JW, Jansen MA, Koeter GH, Postma DS (1993) Airway responsiveness to adenosine 5′-monophosphate in chronic obstructive pulmonary disease is determined by smoking. Am Rev Respir Dis 147(3):553–558PubMedCrossRefGoogle Scholar
  11. 11.
    Caruso M, Varani K, Tringali G, Polosa R (2009) Adenosine and adenosine receptors: their contribution to airway inflammation and therapeutic potential in asthma. Curr Med Chem 16(29):3875–3885PubMedCrossRefGoogle Scholar
  12. 12.
    Mortaz E, Folkerts G, Nijkamp FP, Henricks PA (2010) ATP and the pathogenesis of COPD. Eur J Pharmacol 638(1–3):1–4PubMedCrossRefGoogle Scholar
  13. 13.
    Fozard JR, Ellis KM, Villela Dantas MF, Tigani B, Mazzoni L (2002) Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur J Pharmacol 438(3):183–188PubMedCrossRefGoogle Scholar
  14. 14.
    El-Hashim AZ, Abduo HT, Rachid OM, Luqmani YA, Al Ayadhy BY, Alkhaledi GM (2009) Intranasal administration of NECA can induce both anti-inflammatory and pro-inflammatory effects in BALB/c mice: evidence for A 2A receptor sub-type mediation of NECA-induced anti-inflammatory effects. Pulm Pharmacol Ther 22(3):243–252PubMedCrossRefGoogle Scholar
  15. 15.
    Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111(4):904–915PubMedCrossRefGoogle Scholar
  16. 16.
    Trams EG, Lauter CJ (1974) On the sidedness of plasma membrane enzymes. Biochim Biophys Acta 345(2):180–197PubMedCrossRefGoogle Scholar
  17. 17.
    Liaudet L, Mabley JG, Soriano FG, Pacher P, Marton A, Hasko G, Szabo C (2001) Inosine reduces systemic inflammation and improves survival in septic shock induced by cecal ligation and puncture. Am J Respir Crit Care Med 164(7):1213–1220PubMedCrossRefGoogle Scholar
  18. 18.
    Hasko G, Kuhel DG, Nemeth ZH, Mabley JG, Stachlewitz RF, Virag L, Lohinai Z, Southan GJ, Salzman AL, Szabo C (2000) Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J Immunol 164(2):1013–1019PubMedGoogle Scholar
  19. 19.
    Rahimian R, Fakhfouri G, Daneshmand A, Mohammadi H, Bahremand A, Rasouli MR, Mousavizadeh K, Dehpour AR (2010) Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. Eur J Pharmacol 649(1–3):376–381PubMedCrossRefGoogle Scholar
  20. 20.
    Jin X, Shepherd RK, Duling BR, Linden J (1997) Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100(11):2849–2857PubMedCrossRefGoogle Scholar
  21. 21.
    Liaudet L, Mabley JG, Pacher P, Virag L, Soriano FG, Marton A, Hasko G, Deitch EA, Szabo C (2002) Inosine exerts a broad range of antiinflammatory effects in a murine model of acute lung injury. Ann Surg 235(4):568–578PubMedCrossRefGoogle Scholar
  22. 22.
    Mabley JG, Pacher P, Murthy KG, Williams W, Southan GJ, Salzman AL, Szabo C (2009) The novel inosine analogue INO-2002 exerts an anti-inflammatory effect in a murine model of acute lung injury. Shock 32(3):258–262PubMedCrossRefGoogle Scholar
  23. 23.
    da Rocha Lapa F, da Silva MD, de Almeida Cabrini D, Santos AR (2012) Anti-inflammatory effects of purine nucleosides, adenosine and inosine, in a mouse model of pleurisy: evidence for the role of adenosine A(2) receptors. Purinergic Signal 8(4):693–704PubMedCrossRefGoogle Scholar
  24. 24.
    Sitkovsky MV (2003) Use of the A(2A) adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 65(4):493–501PubMedCrossRefGoogle Scholar
  25. 25.
    Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25(1):33–39PubMedCrossRefGoogle Scholar
  26. 26.
    Nascimento FP, Figueredo SM, Marcon R, Martins DF, Macedo SJ Jr, Lima DA, Almeida RC, Ostroski RM, Rodrigues AL, Santos AR (2010) Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J Pharmacol Exp Ther 334(2):590–598PubMedCrossRefGoogle Scholar
  27. 27.
    Riffo-Vasquez Y, Ligeiro de Oliveira AP, Page CP, Spina D, Tavares-de-Lima W (2007) Role of sex hormones in allergic inflammation in mice. Clin Exp Allergy 37(3):459–470PubMedCrossRefGoogle Scholar
  28. 28.
    Proust B, Nahori MA, Ruffie C, Lefort J, Vargaftig BB (2003) Persistence of bronchopulmonary hyper-reactivity and eosiniphilic lung inflammation after anti-IL-5 or IL-13 treatment in allergic BALB/c and IL-4Rα knockout mice. Clin Exp Allergy 33:119–131PubMedCrossRefGoogle Scholar
  29. 29.
    Orihara K, Dil N, Anaparti V, Moqbel R (2010) What’s new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 4(5):605–629PubMedCrossRefGoogle Scholar
  30. 30.
    Polosa R, Holgate ST (2006) Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets 7(6):699–706PubMedCrossRefGoogle Scholar
  31. 31.
    Sun CX, Zhong H, Mohsenin A, Morschl E, Chunn JL, Molina JG, Belardinelli L, Zeng D, Blackburn MR (2006) Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J Clin Invest 116(8):2173–2182PubMedCrossRefGoogle Scholar
  32. 32.
    Garcia Soriano F, Liaudet L, Marton A, Hasko G, Batista Lorigados C, Deitch EA, Szabo C (2001) Inosine improves gut permeability and vascular reactivity in endotoxic shock. Crit Care Med 29(4):703–708PubMedCrossRefGoogle Scholar
  33. 33.
    Impellizzeri D, Di Paola R, Esposito E, Mazzon E, Paterniti I, Melani A, Bramanti P, Pedata F, Cuzzocrea S (2011) CGS 21680, an agonist of the adenosine (A2A) receptor, decreases acute lung inflammation. Eur J Pharmacol 668(1–2):305–316PubMedCrossRefGoogle Scholar
  34. 34.
    Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90(4):1600–1610PubMedGoogle Scholar
  35. 35.
    Koshiba M, Rosin DL, Hayashi N, Linden J, Sitkovsky MV (1999) Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol Pharmacol 55(3):614–624PubMedGoogle Scholar
  36. 36.
    Garcia GE, Truong LD, Li P, Zhang P, Du J, Chen JF, Feng L (2008) Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J 22(2):445–454PubMedCrossRefGoogle Scholar
  37. 37.
    Polosa R (2002) Adenosine-receptor subtypes: their relevance to adenosine-mediated responses in asthma and chronic obstructive pulmonary disease. Eur Respir J 20(2):488–496PubMedCrossRefGoogle Scholar
  38. 38.
    Livingston M, Heaney LG, Ennis M (2004) Adenosine, inflammation and asthma—a review. Inflamm Res 53(5):171–178PubMedCrossRefGoogle Scholar
  39. 39.
    Holgate ST (2008) Pathogenesis of asthma. Clin Exp Allergy 38(6):872–897PubMedCrossRefGoogle Scholar
  40. 40.
    Galli SJ, Tsai M, Piliponsky AM (2008) The development of allergic inflammation. Nature 454(7203):445–454PubMedCrossRefGoogle Scholar
  41. 41.
    Virag L, Szabo C (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 15(1):99–107PubMedCrossRefGoogle Scholar
  42. 42.
    Liaudet L, Pacher P, Mabley JG, Virag L, Soriano FG, Hasko G, Szabo C (2002) Activation of poly(ADP-ribose) polymerase-1 is a central mechanism of lipopolysaccharide-induced acute lung inflammation. Am J Respir Crit Care Med 165(3):372–377PubMedCrossRefGoogle Scholar
  43. 43.
    Becker BF, Reinholz N, Ozcelik T, Leipert B, Gerlach E (1989) Uric acid as radical scavenger and antioxidant in the heart. Pflugers Arch 415(2):127–135PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fernanda da Rocha Lapa
    • 1
    • 5
  • Ana Paula Ligeiro de Oliveira
    • 2
  • Beatriz Golega Accetturi
    • 3
  • Isabelli de Oliveira Martins
    • 3
  • Helory Vanni Domingos
    • 3
  • Daniela de Almeida Cabrini
    • 1
  • Wothan Tavares de Lima
    • 3
  • Adair Roberto Soares Santos
    • 4
  1. 1.Department of Pharmacology, Center of Biological SciencesFederal University of ParanáCuritibaBrazil
  2. 2.Department of Health SciencesUniversidade Nove de JulhoSão PauloBrazil
  3. 3.Department of Pharmacology, Biomedical Sciences InstituteUniversity of São PauloSão PauloBrazil
  4. 4.Department of Physiological SciencesFederal University of Santa CatarinaFlorianópolisBrazil
  5. 5.Department of Pharmacology, Center of Biological SciencesFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations