Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Non-synonymous polymorphisms in the P2RX 4 are related to bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients

Abstract

In the present study we investigated whether single nucleotide polymorphisms (SNPs) in the P2RX 4 , which alter the P2X 4 R function, are associated with the development of osteoporosis and whether an interaction between the P2X 4 R and P2X 7 R confer a synergistic effect of these two receptors on osteoporosis risk. Patients with fracture (690 females and 231 males, aged ≥50 years) were genotyped for three non-synonymous P2X 4 R SNPs. Bone mineral density (BMD) was measured at the total hip, lumbar spine, and femoral neck. Subject carrying the variant allele of the Tyr315Cys polymorphism showed a 2.68-fold (95 % CI, 1.20–6.02) higher risk of osteoporosis compared with wild-type subject. Furthermore, significant lower lumbar spine BMD values were observed in subjects carrying the Cys315 allele as compared with wild-type (0.85 ± 0.17 and 0.93 ± 0.17 g/cm2, respectively; p < 0.001). Assuming a recessive model, carriers of the variant allele of the Ser242Gly polymorphism showed increased BMD values at the lumbar spine compare to wild-type subject (1.11 ± 0.35 and 0.92 ± 0.17 g/cm2, respectively; p = 0.0045). This is the first study demonstrating an association of non-synonymous polymorphisms in the P2RX 4 and the risk of osteoporosis, suggesting a role of the P2X 4 R in the regulation of bone mass.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Allori AC, Sailon AM, Pan JH, Warren SM (2008) Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B Rev 14(3):285–293. doi:10.1089/ten.teb.2008.0084

  2. 2.

    Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214

  3. 3.

    Liu D, Genetos DC, Shao Y, Geist DJ, Li J, Ke HZ, Turner CH, Duncan RL (2008) Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42(4):644–652

  4. 4.

    Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL (2005) Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 20(1):41–49

  5. 5.

    Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64(3):445–475

  6. 6.

    Wesselius A, Bours MJ, Agrawal A, Gartland A, Dagnelie PC, Schwarz P, Jorgensen NR (2011) Role of purinergic receptor polymorphisms in human bone. Front Biosci 17:2572–2585. http://dx.doi.org/10.2741/3873

  7. 7.

    Nakamura E, Uezono Y, Narusawa K, Shibuya I, Oishi Y, Tanaka M, Yanagihara N, Nakamura T, Izumi F (2000) ATP activates DNA synthesis by acting on P2X receptors in human osteoblast-like MG-63 cells. Am J Physiol Cell Physiol 279:C510–C519

  8. 8.

    Naemsch LN, Weidema AF, Sims SM, Underhill TM, Dixon SJ (1999) P2X(4) purinoceptors mediate an ATP-activated, non-selective cation current in rabbit osteoclasts. J Cell Sci 112(Pt 23):4425–4435

  9. 9.

    Buckley KA, Hipskind RA, Gartland A, Bowler WB, Gallagher JA (2002) Adenosine triphosphate stimulates human osteoclast activity via upregulation of osteoblast-expressed receptor activator of nuclear factor-kappa B ligand. Bone 31(5):582–590. http://dx.doi.org/10.1016/S8756-3282(02)00877-3

  10. 10.

    Hoebertz A, Townsend-Nicholson A, Glass R, Burnstock G, Arnett TR (2000) Expression of P2 receptors in bone and cultured bone cells. Bone 27(4):503–510

  11. 11.

    Soto F, Garcia-Guzman M, Stuhmer W (1997) Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J Membr Biol 160(2):91–100

  12. 12.

    Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442(7102):527–532

  13. 13.

    Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

  14. 14.

    Binderman I, Bahar H, Jacob-Hirsch J, Zeligson S, Amariglio N, Rechavi G, Shoham S, Yaffe A (2007) P2X4 is up-regulated in gingival fibroblasts after periodontal surgery. J Dent Res 86(2):181–185. doi:10.1177/154405910708600214

  15. 15.

    Liu PS, Chen CY (2010) Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells. Toxicol Appl Pharmacol 244(3):308–314. doi:10.1016/j.taap. 2010.01.007

  16. 16.

    Stokes L, Scurrah K, Ellis JA, Cromer BA, Skarratt KK, Gu BJ, Harrap SB, Wiley JS (2011) A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension 58(6):1086–1092. doi:10.1161/HYPERTENSIONAHA.111.176180

  17. 17.

    Williams EJ, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14(6):1060–1067. doi:10.1101/gr.2131104

  18. 18.

    Lise B. Husted TH, Liselotte Stenkjaer, Mette Carstens, Niklas R. Jorgensen, Bente L. Langdahl (2012) Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis. Bone (in press)

  19. 19.

    Anke Wesselius MJLB, Niklas R. Jørgensen, Peter Schwarz, Zanne Henriksen, Susanne Syberg SP, Svenhjalmar van Helden, Pieter C. Dagnelie (2012) Association of P2X7 receptor polymorphisms with bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients. Osteoporosis International (in press)

  20. 20.

    Gartland A, Skarratt KK, Hocking LJ, Parsons C, Stokes L, Jorgensen NR, Fraser WD, Reid DM, Gallagher JA, Wiley JS (2012) Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women. Eur J Hum Genet. doi:10.1038/ejhg.2011.245

  21. 21.

    Jorgensen NR, Husted LB, Skarratt KK, Stokes L, Tofteng CL, Kvist T, Jensen JE, Eiken P, Brixen K, Fuller S, Clifton-Bligh R, Gartland A, Schwarz P, Langdahl BL, Wiley JS (2012) Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures. Eur J Hum Genet. doi:10.1038/ejhg.2011.253

  22. 22.

    van Helden S, Cauberg E, Geusens P, Winkes B, van der Weijden T, Brink P (2007) The fracture and osteoporosis outpatient clinic: an effective strategy for improving implementation of an osteoporosis guideline. J Eval Clin Pract 13(5):801–805. doi:10.1111/j.1365-2753.2007.00784.x

  23. 23.

    PLINK (2009) PLINK v1.07. Whole genome association analysis toolset. Available via http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml. Accessed on February 2012

  24. 24.

    Yan Z, Liang Z, Obsil T, Stojilkovic SS (2006) Participation of the Lys313-Ile333 sequence of the purinergic P2X4 receptor in agonist binding and transduction of signals to the channel gate. J Biol Chem 281(43):32649–32659. doi:10.1074/jbc.M512791200

  25. 25.

    Roberts VH, Webster RP, Brockman DE, Pitzer BA, Myatt L (2007) Post-translational modifications of the P2X(4) purinergic receptor subtype in the human placenta are altered in preeclampsia. Placenta 28(4):270–277. doi:10.1016/j.placenta.2006.04.008

  26. 26.

    Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. Faseb J 24(8):2916–2927

  27. 27.

    Orriss IR, Burnstock G, Arnett TR (2009) Expression of multiple P2 receptor subtypes by osteoblasts and osteoclasts. Bone 44:S304–S304

  28. 28.

    Hansen T, Jakobsen KD, Fenger M, Nielsen J, Krane K, Fink-Jensen A, et al. (2008) Variation in the purinergic P2RX(7) receptor gene and schizophrenia. Schizophr Res 104(1-3):146–152

Download references

Acknowledgments

The work was supported by the European Commission under the 7th Framework Programme, performed as a collaborative project “Fighting Osteoporosis by blocking nucleotides: purinergic signaling in bone formation and homeostasis” (ATPBone), with participants; Copenhagen University Hospital, University College London, Maastricht University, University of Ferrara, University of Liverpool, University of Sheffield, and Université Libre de Bruxelles.

Author information

Correspondence to Anke Wesselius.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 32 kb)

ESM 2

(DOC 39 kb)

ESM 3

(DOC 29 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wesselius, A., Bours, M.J., Jørgensen, N.R. et al. Non-synonymous polymorphisms in the P2RX 4 are related to bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients. Purinergic Signalling 9, 123–130 (2013). https://doi.org/10.1007/s11302-012-9337-0

Download citation

Keywords

  • P2X 4 receptor
  • Osteoporosis
  • Bone mineral density
  • Polymorphisms