Purinergic Signalling

, Volume 8, Supplement 1, pp 27–40 | Cite as

Measurement of purine release with microelectrode biosensors

Original Article

Abstract

Purinergic signalling departs from traditional paradigms of neurotransmission in the variety of release mechanisms and routes of production of extracellular ATP and adenosine. Direct real-time measurements of these purinergic agents have been of great value in understanding the functional roles of this signalling system in a number of diverse contexts. Here, we review the methods for measuring purine release, introduce the concept of microelectrode biosensors for ATP and adenosine and explain how these have been used to provide new mechanistic insight in respiratory chemoreception, synaptic physiology, eye development and purine salvage. We finish by considering the association of purine release with pathological conditions and examine the possibilities that biosensors for purines may one day be a standard part of the clinical diagnostic tool chest.

Keywords

Biosensor Real-time measurement Epilepsy Stroke Chemosensory mechanisms Development 

Notes

Acknowledgements

We thank the current and former staff at Sarissa Biomedical: Enrique Llaudet, Faming Tian, Sonja Hatz, Shakila Bibi, Jan Lopatar and Wenjue Wu, who have all contributed to the development and application of purine biosensors to a range of interesting problems. We also thank the Wellcome Trust and MRC for providing funding to make possible some of the work described in this review.

References

  1. 1.
    Wall MJ, Usowicz MM (1997) Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. Eur J Neurosci 9(3):533–548PubMedGoogle Scholar
  2. 2.
    Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21(1):8–14PubMedGoogle Scholar
  3. 3.
    Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403(6767):316–321PubMedGoogle Scholar
  4. 4.
    Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359(6391):144–147PubMedGoogle Scholar
  5. 5.
    Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589–597PubMedGoogle Scholar
  6. 6.
    Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10(12):3898–3902PubMedGoogle Scholar
  7. 7.
    Jo YH, Schlichter R (1999) Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat Neurosci 2(3):241–245PubMedGoogle Scholar
  8. 8.
    Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72(9):2001–2007PubMedGoogle Scholar
  9. 9.
    Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23(12):625–633PubMedGoogle Scholar
  10. 10.
    Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116PubMedGoogle Scholar
  11. 11.
    Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129(6):485–491PubMedGoogle Scholar
  12. 12.
    Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238. doi: 10.1038/nrn2803 PubMedGoogle Scholar
  13. 13.
    Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572(1–3):65–68. doi: 10.1016/j.febslet.2004.07.009 PubMedGoogle Scholar
  14. 14.
    Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28(18):4702–4711. doi: 10.1523/JNEUROSCI.5048-07.2008 PubMedGoogle Scholar
  15. 15.
    Huckstepp RT, id Bihi R, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N (2010) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588(Pt 20):3901–3920. doi: 10.1113/jphysiol.2010.192088 PubMedGoogle Scholar
  16. 16.
    Fields RD, Ni Y (2010) Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci Signal 3(142):ra73. doi: 10.1126/scisignal.2001128 PubMedGoogle Scholar
  17. 17.
    Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic signalling 1(4):311–328. doi: 10.1007/s11302-005-1557-0 PubMedGoogle Scholar
  18. 18.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):299–309PubMedGoogle Scholar
  19. 19.
    Wall MJ, Dale N (2007) Auto-inhibition of rat parallel fibre-Purkinje cell synapses by activity-dependent adenosine release. J Physiol 581(Pt 2):553–565. doi: 10.1113/jphysiol.2006.126417 PubMedGoogle Scholar
  20. 20.
    Klyuch BP, Richardson MJ, Dale N, Wall MJ (2011) The dynamics of single spike-evoked adenosine release in the cerebellum. J Physiol 589(Pt 2):283–295. doi: 10.1113/jphysiol.2010.198986 PubMedGoogle Scholar
  21. 21.
    Wall M, Dale N (2008) Activity-dependent release of adenosine: a critical re-evaluation of mechanism. Curr Neuropharmacol 6(4):329–337. doi: 10.2174/157015908787386087 PubMedGoogle Scholar
  22. 22.
    Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101(5):1400–1413PubMedGoogle Scholar
  23. 23.
    Martin ED, Fernandez M, Perea G, Pascual O, Haydon PG, Araque A, Cena V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55(1):36–45PubMedGoogle Scholar
  24. 24.
    Dale N (1998) Delayed production of adenosine underlies temporal modulation of swimming in frog embryo. J Physiol (Lond) 511(Pt 1):265–272Google Scholar
  25. 25.
    Dale N, Pearson T, Frenguelli BG (2000) Direct measurement of adenosine release during hypoxia in the CA1 region of the rat hippocampal slice. J Physiol-London 526(1):143–155PubMedGoogle Scholar
  26. 26.
    Korf J, Huinink KD, Posthuma-Trumpie GA (2010) Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring. Trends Biotechnol 28(3):150–158. doi: 10.1016/j.tibtech.2009.12.005 PubMedGoogle Scholar
  27. 27.
    Kehr J (1993) A survey on quantitative microdialysis: theoretical models and practical implications. J Neurosci Methods 48(3):251–261PubMedGoogle Scholar
  28. 28.
    Whittle IR, Glasby M, Lammie A, Bell H, Ungerstedt U (1998) Neuropathological findings after intracerebral implantation of microdialysis catheters. Neuroreport 9(12):2821–2825PubMedGoogle Scholar
  29. 29.
    O’Neill RD, Lowry JP (1995) On the significance of brain extracellular uric acid detected with in-vivo monitoring techniques: a review. Behav Brain Res 71(1–2):33–49PubMedGoogle Scholar
  30. 30.
    Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145(3):494–504PubMedGoogle Scholar
  31. 31.
    Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3(7):e2599. doi: 10.1371/journal.pone.0002599 PubMedGoogle Scholar
  32. 32.
    Brown P, Dale N (2002) Spike-independent release of ATP from Xenopus spinal neurons evoked by activation of glutamate receptors. J Physiol 540(Pt 3):851–860PubMedGoogle Scholar
  33. 33.
    Pangrsic T, Potokar M, Stenovec M, Kreft M, Fabbretti E, Nistri A, Pryazhnikov E, Khiroug L, Giniatullin R, Zorec R (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282(39):28749–28758. doi: 10.1074/jbc.M700290200 PubMedGoogle Scholar
  34. 34.
    Richler E, Chaumont S, Shigetomi E, Sagasti A, Khakh BS (2008) Tracking transmitter-gated P2X cation channel activation in vitro and in vivo. Nat Methods 5(1):87–93. doi: 10.1038/nmeth1144 PubMedGoogle Scholar
  35. 35.
    Llaudet E, Botting NP, Crayston JA, Dale N (2003) A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosens Bioelectron 18(1):43–52PubMedGoogle Scholar
  36. 36.
    Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77(10):3267–3273PubMedGoogle Scholar
  37. 37.
    Kueng A, Kranz C, Mizaikoff B (2004) Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron 19(10):1301–1307PubMedGoogle Scholar
  38. 38.
    Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotechnol 23(8):420–428PubMedGoogle Scholar
  39. 39.
    Winterstein H (1949) The reaction theory of respiratory regulation. Experientia 5(6):221–226PubMedGoogle Scholar
  40. 40.
    Loeschcke HH (1982) Central chemosensitivity and the reaction theory. J Physiol 332:1–24PubMedGoogle Scholar
  41. 41.
    Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 541(Pt 2):493–509PubMedGoogle Scholar
  42. 42.
    Gargaglioni LH, Hartzler LK, Putnam RW (2010) The locus coeruleus and central chemosensitivity. Respir Physiol Neurobiol 173(3):264–273. doi: 10.1016/j.resp.2010.04.024 PubMedGoogle Scholar
  43. 43.
    Mitchel RA, Loeschcke HH, Severinghaus JW, Richardson BW, Massion WH (1963) Regions of respiratory chemosensitivity on the surface of the medulla. Ann N Y Acad Sci 109:661–681. doi: 10.1111/j.1749-6632.1963.tb13496.x Google Scholar
  44. 44.
    Schlaefke ME, See WR, Loeschcke HH (1970) Ventilatory response to alterations of H + ion concentration in small areas of the ventral medullary surface. Respir Physiol 10:198–212PubMedGoogle Scholar
  45. 45.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7(12):1360–1369. doi: 10.1038/nn1357 PubMedGoogle Scholar
  46. 46.
    Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26(40):10305–10314. doi: 10.1523/JNEUROSCI.2917-06.2006 PubMedGoogle Scholar
  47. 47.
    Richerson GB, Wang W, Tiwari J, Bradley SR (2001) Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Respir Physiol 129(1–2):175–189PubMedGoogle Scholar
  48. 48.
    Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB (2003) Midbrain serotonergic neurons are central pH chemoreceptors. Nat Neurosci 6(11):1139–1140PubMedGoogle Scholar
  49. 49.
    Gourine AV, Llaudet E, Dale N, Spyer KM (2005) ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436(7047):108–111. doi: 10.1038/nature03690 PubMedGoogle Scholar
  50. 50.
    Mulkey DK, Mistry AM, Guyenet PG, Bayliss DA (2006) Purinergic P2 receptors modulate excitability but do not mediate pH sensitivity of RTN respiratory chemoreceptors. J Neurosci 26(27):7230–7233. doi: 10.1523/JNEUROSCI.1696-06.2006 PubMedGoogle Scholar
  51. 51.
    Wenker IC, Kreneisz O, Nishiyama A, Mulkey DK (2010) Astrocytes in the retrotrapezoid nucleus sense H + by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol 104(6):3042–3052. doi: 10.1152/jn.00544.2010 PubMedGoogle Scholar
  52. 52.
    Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575. doi: 10.1126/science.1190721 PubMedGoogle Scholar
  53. 53.
    Huckstepp RT, Eason R, Sachdev A, Dale N (2010) CO2-dependent opening of connexin 26 and related beta connexins. J Physiol 588(Pt 20):3921–3931. doi: 10.1113/jphysiol.2010.192096 PubMedGoogle Scholar
  54. 54.
    Zimmermann H, Braun N (1999) Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385PubMedGoogle Scholar
  55. 55.
    Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638(1):1–19PubMedGoogle Scholar
  56. 56.
    Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430. doi: 10.1007/s11302-006-9003-5 PubMedGoogle Scholar
  57. 57.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694. doi: 10.1016/j.bbamcr.2008.01.024 PubMedGoogle Scholar
  58. 58.
    Hanson I, Van Heyningen V (1995) Pax6: more than meets the eye. Trends Genet 11(7):268–272PubMedGoogle Scholar
  59. 59.
    Callaerts P, Halder G, Gehring WJ (1997) PAX-6 in development and evolution. Annu Rev Neurosci 20:483–532. doi: 10.1146/annurev.neuro.20.1.483 PubMedGoogle Scholar
  60. 60.
    Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167. doi: 10.1242/dev.00723 PubMedGoogle Scholar
  61. 61.
    Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15(9):371–377PubMedGoogle Scholar
  62. 62.
    Gehring WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96(3):171–184. doi: 10.1093/jhered/esi027 PubMedGoogle Scholar
  63. 63.
    Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci U S A 99(4):2020–2025. doi: 10.1073/pnas.022626999 PubMedGoogle Scholar
  64. 64.
    Masse K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449(7165):1058–1062. doi: 10.1038/nature06189 PubMedGoogle Scholar
  65. 65.
    Dale N (2008) Dynamic ATP signalling and neural development. J Physiol 586(10):2429–2436. doi: 10.1113/jphysiol.2008.152207 PubMedGoogle Scholar
  66. 66.
    Weigand MA, Michel A, Eckstein HH, Martin E, Bardenheuer HJ (1999) Adenosine: a sensitive indicator of cerebral ischemia during carotid endarterectomy. Anesthesiology 91(2):414–421PubMedGoogle Scholar
  67. 67.
    Pearson T, Nuritova F, Caldwell D, Dale N, Frenguelli BG (2001) A depletable pool of adenosine in area CA1 of the rat hippocampus. J Neurosci 21(7):2298–2307PubMedGoogle Scholar
  68. 68.
    Frenguelli BG, Llaudet E, Dale N (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J Neurochem 86(6):1506–1515PubMedGoogle Scholar
  69. 69.
    Zimmer HG (1996) Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol Cell Biochem 160–161:101–109PubMedGoogle Scholar
  70. 70.
    zur Nedden S, Hawley S, Pentland N, Hardie DG, Doney AS, Frenguelli BG (2011) Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J Neurosci 31(16):6221–6234. doi: 10.1523/JNEUROSCI.4039-10.2011 PubMedGoogle Scholar
  71. 71.
    Wall MJ, Wigmore G, Lopatar J, Frenguelli BG, Dale N (2008) The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropharmacology 55(7):1251–1258. doi: 10.1016/j.neuropharm.2008.08.005 PubMedGoogle Scholar
  72. 72.
    Lopatar J, Dale N, Frenguelli BG (2011) Minor contribution of ATP P2 receptors to electrically-evoked electrographic seizure activity in hippocampal slices: Evidence from purine biosensors and P2 receptor agonists and antagonists. Neuropharmacology 61(1–2):25–34. doi: 10.1016/j.neuropharm.2011.02.011 PubMedGoogle Scholar
  73. 73.
    Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG (2004) AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 88(5):1272–1282PubMedGoogle Scholar
  74. 74.
    Shecterle LM, Terry KR, St Cyr JA (2010) The patented uses of D-ribose in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 5(2):138–142PubMedGoogle Scholar
  75. 75.
    During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624. doi: 10.1002/ana.410320504 PubMedGoogle Scholar
  76. 76.
    Dunwiddie TV (1999) Adenosine and suppression of seizures. Adv Neurol 79:1001–1010PubMedGoogle Scholar
  77. 77.
    Dale N, Frenguelli BG (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 7(3):160–179. doi: 10.2174/157015909789152146 PubMedGoogle Scholar
  78. 78.
    Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48(6):1011–1023PubMedGoogle Scholar
  79. 79.
    Loo C, Simpson B, MacPherson R (2010) Augmentation strategies in electroconvulsive therapy. J ECT 26(3):202–207. doi: 10.1097/YCT.0b013e3181e48143 PubMedGoogle Scholar
  80. 80.
    Etherington LA, Patterson GE, Meechan L, Boison D, Irving AJ, Dale N, Frenguelli BG (2009) Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology 56(2):429–437. doi: 10.1016/j.neuropharm.2008.09.016 PubMedGoogle Scholar
  81. 81.
    Kumaria A, Tolias CM, Burnstock G (2008) ATP signalling in epilepsy. Purinergic Signal 4(4):339–346. doi: 10.1007/s11302-008-9115-1 PubMedGoogle Scholar
  82. 82.
    Saugstad OD (1975) Hypoxanthine as a measurement of hypoxia. Pediatr Res 9(4):158–161PubMedGoogle Scholar
  83. 83.
    Swanstrom S, Bratteby LE (1982) Hypoxanthine as a test of perinatal hypoxia as compared to lactate, base deficit, and pH. Pediatr Res 16(2):156–160PubMedGoogle Scholar
  84. 84.
    Harkness RA, Whitelaw AG, Simmonds RJ (1982) Intrapartum hypoxia: the association between neurological assessment of damage and abnormal excretion of ATP metabolites. J Clin Pathol 35(9):999–1007PubMedGoogle Scholar
  85. 85.
    Bratteby LE, Swanstrom S (1982) Hypoxanthine concentration in plasma during the first 2 h after birth in normal and asphyxiated infants. Pediatr Res 16(2):152–155PubMedGoogle Scholar
  86. 86.
    Thiringer K, Karlsson K, Rosen KG (1981) Changes in hypoxanthine and lactate during and after hypoxia in the fetal sheep with chronically-implanted vascular catheters. J Dev Physiol 3(6):375–385PubMedGoogle Scholar
  87. 87.
    O’Connor MC, Harkness RA, Simmonds RJ, Hytten FE (1981) The measurement of hypoxanthine, xanthine, inosine and uridine in umbilical cord blood and fetal scalp blood samples as a measure of fetal hypoxia. Br J Obstet Gynaecol 88(4):381–390PubMedGoogle Scholar
  88. 88.
    O’Connor MC, Harkness RA, Simmonds RJ, Hytten FE (1981) Raised hypoxanthine, xanthine and uridine concentrations in meconium stained amniotic fluid and during labour. Br J Obstet Gynaecol 88(4):375–380PubMedGoogle Scholar
  89. 89.
    Thiringer K, Saugstad OD, Kjellmer I (1980) Plasma hypoxanthine in exteriorized, acutely asphyxiated fetal lambs. Pediatr Res 14(8):905–910PubMedGoogle Scholar
  90. 90.
    Guicheney P, Zorn JR, Rey E, Sureau C, Olive G (1978) Plasma hypoxanthine in neonatal hypoxia: a comparison of two methods. Eur J Obstet Gynecol Reprod Biol 8(2):89–94PubMedGoogle Scholar
  91. 91.
    Russell GA, Jeffers G, Cooke RW (1992) Plasma hypoxanthine: a marker for hypoxic-ischaemic induced periventricular leucomalacia? Arch Dis Child 67(4 Spec No):388–392PubMedGoogle Scholar
  92. 92.
    Turner CP, Seli M, Ment L, Stewart W, Yan H, Johansson B, Fredholm BB, Blackburn M, Rivkees SA (2003) A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc Natl Acad Sci U S A 100(20):11718–11722. doi: 10.1073/pnas.1931975100 PubMedGoogle Scholar
  93. 93.
    Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Neuroprotective role of adenosine in cerebral-ischemia. Trends Pharmacol Sci 13(12):439–445PubMedGoogle Scholar
  94. 94.
    Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4(4):346–369PubMedGoogle Scholar
  95. 95.
    Fowler JC (1993) Purine release and inhibition of synaptic transmission during hypoxia and hypoglycemia in rat hippocampal slices. Neurosci Lett 157(1):83–86PubMedGoogle Scholar
  96. 96.
    Phillis JW, Smith-Barbour M, O’Regan MH, Perkins LM (1994) Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. Neurochem Res 19(9):1125–1130PubMedGoogle Scholar
  97. 97.
    Schubert P, Rudolphi KA, Fredholm BB, Nakamura Y (1994) Modulation of nerve and glial function by adenosine—role in the development of ischemic damage. Int J Biochem 26(10–11):1227–1236PubMedGoogle Scholar
  98. 98.
    Latini S, Bordoni F, Pedata F, Corradetti R (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127(3):729–739PubMedGoogle Scholar
  99. 99.
    Pearson T, Currie AJ, Etherington LA, Gadalla AE, Damian K, Llaudet E, Dale N, Frenguelli BG (2003) Plasticity of purine release during cerebral ischemia: clinical implications? J Cell Mol Med 7(4):362–375PubMedGoogle Scholar
  100. 100.
    Laghi Pasini F, Guideri F, Picano E, Parenti G, Petersen C, Varga A, Di Perri T (2000) Increase in plasma adenosine during brain ischemia in man: a study during transient ischemic attacks, and stroke. Brain Res Bull 51(4):327–330PubMedGoogle Scholar
  101. 101.
    Moser GH, Schrader J, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256(4 Pt 1):C799–C806PubMedGoogle Scholar
  102. 102.
    Miseta A, Bogner P, Berenyi E, Kellermayer M, Galambos C, Wheatley DN, Cameron IL (1993) Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes. Biochim Biophys Acta 1175(2):133–139PubMedGoogle Scholar
  103. 103.
    Jagger JE, Bateman RM, Ellsworth ML, Ellis CG (2001) Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am J Physiol Heart Circ Physiol 280(6):H2833–H2839PubMedGoogle Scholar
  104. 104.
    Fischer DJ, Torrence NJ, Sprung RJ, Spence DM (2003) Determination of erythrocyte deformability and its correlation to cellular ATP release using microbore tubing with diameters that approximate resistance vessels in vivo. Analyst 128(9):1163–1168PubMedGoogle Scholar
  105. 105.
    Murphy LJ, Galley PT (1994) Measurement in vitro of human plasma glycerol with a hydrogen peroxide detecting microdialysis enzyme electrode. Anal Chem 66(23):4345–4353PubMedGoogle Scholar
  106. 106.
    Tian F, Llaudet E, Dale N (2007) Ruthenium purple-mediated microelectrode biosensors based on sol–gel film. Anal Chem 79(17):6760–6766. doi: 10.1021/ac070822f PubMedGoogle Scholar
  107. 107.
    Gourine AV, Llaudet E, Thomas T, Dale N, Spyer KM (2002) Adenosine release in nucleus tractus solitarii does not appear to mediate hypoxia-induced respiratory depression in rats. J Physiol 544(Pt 1):161–170PubMedGoogle Scholar
  108. 108.
    Huxtable AG, Zwicker JD, Poon BY, Pagliardini S, Vrouwe SQ, Greer JJ, Funk GD (2009) Tripartite purinergic modulation of central respiratory networks during perinatal development: the influence of ATP, ectonucleotidases, and ATP metabolites. J Neurosci 29(47):14713–14725. doi: 10.1523/jneurosci.2660-09.2009 PubMedGoogle Scholar
  109. 109.
    Gourine AV, Dale N, Korsak A, Llaudet E, Tian F, Huckstepp R, Spyer KM (2008) Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer-Hering) reflex pathway. J Physiol 586(16):3963–3978. doi: 10.1113/jphysiol.2008.154567 PubMedGoogle Scholar
  110. 110.
    Gourine AV, Llaudet E, Dale N, Spyer KM (2005) Release of ATP in the ventral medulla during hypoxia in rats: role in hypoxic ventilatory response. J Neurosci 25(5):1211–1218PubMedGoogle Scholar
  111. 111.
    Dale N, Gourine AV, Llaudet E, Bulmer D, Thomas T, Spyer KM (2002) Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo. J Physiol 544(Pt 1):149–160PubMedGoogle Scholar
  112. 112.
    Wall M, Eason R, Dale N (2010) Biosensor measurement of purine release from cerebellar cultures and slices. Purinergic Signal 6(3):339–348. doi: 10.1007/s11302-010-9185-8 PubMedGoogle Scholar
  113. 113.
    Wall MJ, Atterbury A, Dale N (2007) Control of basal extracellular adenosine concentration in rat cerebellum. J Physiol 582(Pt 1):137–151. doi: 10.1113/jphysiol.2007.132050 PubMedGoogle Scholar
  114. 114.
    Gourine AV, Dale N, Llaudet E, Poputnikov DM, Spyer KM, Gourine VN (2007) Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbits. J Physiol 585(Pt 1):305–316. doi: 10.1113/jphysiol.2007.143933 PubMedGoogle Scholar
  115. 115.
    Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589(Pt 9):2275–2286. doi: 10.1113/jphysiol.2010.202051 PubMedGoogle Scholar
  116. 116.
    Schock SC, Munyao N, Yakubchyk Y, Sabourin LA, Hakim AM, Ventureyra EC, Thompson CS (2007) Cortical spreading depression releases ATP into the extracellular space and purinergic receptor activation contributes to the induction of ischemic tolerance. Brain Res 1168:129–138. doi: 10.1016/j.brainres.2007.06.070 PubMedGoogle Scholar
  117. 117.
    Pearson T, Damian K, Lynas RE, Frenguelli BG (2006) Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J Neurochem 97(5):1357–1368PubMedGoogle Scholar
  118. 118.
    Pearson T, Frenguelli BG (2004) Adrenoceptor subtype-specific acceleration of the hypoxic depression of excitatory synaptic transmission in area CA1 of the rat hippocampus. Eur J Neurosci 20(6):1555–1565PubMedGoogle Scholar
  119. 119.
    Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J, Bakos R, Nedergaard M (2008) Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med 14(1):75–80. doi: 10.1038/nm1693 PubMedGoogle Scholar
  120. 120.
    Agnesi F, Tye SJ, Bledsoe JM, Griessenauer CJ, Kimble CJ, Sieck GC, Bennet KE, Garris PA, Blaha CD, Lee KH (2009) Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring. J Neurosurg 111(4):701–711. doi: 10.3171/2009.3.JNS0990[doi] PubMedGoogle Scholar
  121. 121.
    Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28(3):681–695. doi: 10.1523/JNEUROSCI.3827-07.2008 PubMedGoogle Scholar
  122. 122.
    Rubini P, Milosevic J, Engelhardt J, Al-Khrasani M, Franke H, Heinrich A, Sperlagh B, Schwarz SC, Schwarz J, Norenberg W, Illes P (2009) Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium 45(5):485–498. doi: 10.1016/j.ceca.2009.03.008 PubMedGoogle Scholar
  123. 123.
    Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46(5):731–744PubMedGoogle Scholar
  124. 124.
    Masson JF, Kranz C, Mizaikoff B, Gauda EB (2008) Amperometric ATP microbiosensors for the analysis of chemosensitivity at rat carotid bodies. Anal Chem 80(11):3991–3998. doi: 10.1021/ac7018969 PubMedGoogle Scholar
  125. 125.
    Begg M, Dale N, Llaudet E, Molleman A, Parsons ME (2002) Modulation of the release of endogenous adenosine by cannabinoids in the myenteric preparation of the guinea-pig plexus-longitudinal muscle ileum. Br J Pharmacol 137(8):1298–1304PubMedGoogle Scholar
  126. 126.
    Patel BA, Rogers M, Wieder T, O’Hare D, Boutelle MG (2011) ATP microelectrode biosensor for stable long-term in vitro monitoring from gastrointestinal tissue. Biosens Bioelectron 26(6):2890–2896. doi: 10.1016/j.bios.2010.11.033 PubMedGoogle Scholar
  127. 127.
    Kluess HA, Stone AJ, Evanson KW (2010) ATP overflow in skeletal muscle 1A arterioles. J Physiol 588(Pt 16):3089–3100. doi: 10.1113/jphysiol.2010.193094 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of WarwickCoventryUK
  2. 2.Sarissa Biomedical LtdCoventryUK

Personalised recommendations