Purinergic Signalling

, Volume 8, Supplement 1, pp 41–56 | Cite as

P2X receptor antagonists for pain management: examination of binding and physicochemical properties

  • Rebecca J. Gum
  • Brian Wakefield
  • Michael F. Jarvis
Original Article

Abstract

Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.

Keywords

Physicochemical parameters P2X4 P2X7 P2X3 Pain 

Abbreviations

clogP

Calculated partition coefficient (octanol/water) of a unionized organic compound—ionization not considered and pH independent. A measure of lipophilicity

ClogD

Calculated distribution coefficient (octanol/buffer) of a compound in all forms (ionized and unionized)—pH dependent. A pH dependent measure of lipophilicity

PSA

Polar surface area—surface sum over all polar atoms in a molecule (generally N and O) units in Angstrom squared. A measure of polarity

HBD

Hydrogen bond donors

HBA

Hydrogen bond acceptors

MW

Molecular weight

BEI

Binding efficiency index

MPO

Multi-parameter optimization

ADME

Absorption, distribution, metabolism, and elimination

CFA

Complete Freund’s adjuvant

Notes

Acknowledgments

The authors thank Jennifer van Camp and Phil Cox for their input on the physicochemical analysis presented in this manuscript and their critical comments on earlier versions of the manuscript.

References

  1. 1.
    Honore P, Jarvis MF (2006) Acute and chronic pain. In: Triggle DJ, Taylor JB (eds) Comprehensive medicinal chemistry II, vol. 6. Elsevier, Oxford, pp 327–349Google Scholar
  2. 2.
    Perl ER (2007) Ideas about pain, a historical view. Nat Rev Neurosci 8:71–80PubMedCrossRefGoogle Scholar
  3. 3.
    Woolf CJ (2011) Central sensitization:implications for the diagnosis and treatment of pain. Pain 152(3 Suppl):S2–S15PubMedCrossRefGoogle Scholar
  4. 4.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284PubMedCrossRefGoogle Scholar
  5. 5.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797PubMedCrossRefGoogle Scholar
  6. 6.
    Bleehen T, Keele CA (1977) Observation on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3:367–377PubMedCrossRefGoogle Scholar
  7. 7.
    Hamilton SG, Warburton J, Bhattacharjee A, Ward J, McMahon SB (2000) ATP in human skin elicits a dose-related pain response under conditions of hyperalgesia. Brain 123:1238–1246PubMedCrossRefGoogle Scholar
  8. 8.
    Sawynok J (2007) Adenosine and ATP receptors. Handb Exp Pharmacol 177:309–328PubMedCrossRefGoogle Scholar
  9. 9.
    Jarvis MF, Wismer CT, Schweitzer E, Yu H, van Biesen T, Lynch KJ, Burgard EC, Kowaluk EA (2001) Modulation of BzATP and formalin induced nociception: attenuation by the P2X receptor antagonist, TNP-ATP and enhancement by the P2X3 allosteric modulator, cibacron blue. Br J Pharmacol 132:259–269PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4093PubMedCrossRefGoogle Scholar
  11. 11.
    Jarvis MF (2010) The neural-glial purinergic receptor ensemble in chronic pain states. Trends Neurosci 33:48–57PubMedCrossRefGoogle Scholar
  12. 12.
    Mio K, Ogura T, Yamamoto T, Hiroaki Y, Fujiyoshi Y, Kubo Y, Sato C (2009) Reconstruction of the P2X(2) receptor reveals a vase-shaped structure with lateral tunnels above the membrane. Structure 17(2):266–275PubMedCrossRefGoogle Scholar
  13. 13.
    Kawate T, Michel JC, Birdsong WT, Gouaux E (2009) Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–598PubMedCrossRefGoogle Scholar
  14. 14.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability of drug discovery and development settings. Adv Drug Delivery Rev 46:3–26CrossRefGoogle Scholar
  15. 15.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev/Drug Disc 6:881–889CrossRefGoogle Scholar
  16. 16.
    Muresan S, Sadowski J (2008) Properties guiding drug- and lead-likeness. In: Mannhold R (ed) Molecular drug properties, measurement and prediction (Ch. 17). Wiley, Weinheim, pp 441–461Google Scholar
  17. 17.
    Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotech 24(7):805–815CrossRefGoogle Scholar
  18. 18.
    Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD (2003) A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem 46:1250–1256PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson TW, Dress KR, Edwards M (2009) Using the golden triangle to optimize clearance and oral absorption. Bioorg Med Chem Lett 19:5560–5564PubMedCrossRefGoogle Scholar
  20. 20.
    Ritchie TJ, Macdonald SJF (2008) The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design? Drug Disc Today 14(21/22):1011–1020Google Scholar
  21. 21.
    Peters J, Schnider P, Mattei P, Kansy M (2009) Pharmacology promiscuity: dependence on compound properties and target specificity in a set of recent roche compounds. Chem Med Chem 4:680–686PubMedGoogle Scholar
  22. 22.
    Hughes JD, Blagg J, Price DA, Bailey S, DeCrescenzo GA, Devraj RV, Ellsworth E, Fobian YM, Gibbs ME, Gilles RW, Greene N, Huang E, Krieger-Burke T, Joesel J, Wager T, Whiteley L, Zhang Y (2008) Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg & Med Chem Lett 18:4872–4875CrossRefGoogle Scholar
  23. 23.
    Wager TT, Chandrasekaran RY, Hou X, Troutman MD, Verhoest PR, Villalobos A, Will Y (2010) Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 1:420–434CrossRefGoogle Scholar
  24. 24.
    Wager TT, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond Rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449CrossRefGoogle Scholar
  25. 25.
    Abad-Zapatero C, Metz JT (2005) Ligand efficiency indices as guideposts for drug discovery. Drug Disc Today 10(7):464–469CrossRefGoogle Scholar
  26. 26.
    Jarvis MF (2003) Contributions of P2X3 homomeric and heteromeric channels to acute and chronic pain. Expert Opin Ther Targets 7:513–522PubMedCrossRefGoogle Scholar
  27. 27.
    Inoue K, Tsuda M, Tozaki-Saitoh H (2007) Modification of neuropathic pain sensation through microglial ATP receptor. Purinergic Sig 3:311–316CrossRefGoogle Scholar
  28. 28.
    Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M (2008) The purinergic antagonist PPADS reduces pain related behaviors and interleukin-1beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis CJ, Surprenant A, Evans RJ (1998) 2′,3′-O-(2,4,6-trinitrophenyl)ATP- a nanomolar affinity antagonist at rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 124:1463–1466PubMedCrossRefGoogle Scholar
  30. 30.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  31. 31.
    Donnelly-Roberts D, McGaraughty S, Shieh C-C, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharm Exp Ther 324(2):409–415CrossRefGoogle Scholar
  32. 32.
    Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ, Subieta A, Van Biesen T, Cartmell J, Bianchi B, Niforatos W, Kage K, Yu H, Mikusa J, Wismer CT, Zhu CZ, Chu K, Lee CH, Stewart AO, Polakowski J, Cox BF, Kowaluk E, Williams M, Sullivan J, Faltynek C (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 99:17179–17184PubMedCrossRefGoogle Scholar
  33. 33.
    McGaraughty S, Wismer CT, Zhu CZ, Mikusa J, Honore P, Chu KL, Lee CH, Faltynek CR, Jarvis MF (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140:1381–1388PubMedCrossRefGoogle Scholar
  34. 34.
    Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, Kaneko S (2007) Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience 147:445–455PubMedCrossRefGoogle Scholar
  35. 35.
    Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW (2006) Pharmacology of P2X channels. Eur J Physiol 452:513–537CrossRefGoogle Scholar
  36. 36.
    Carter DS, Alam M, Cai H, Dillon MP, Ford APDW, Gever JR, Jahangir A, Lin C, Moore AG, Wagner PJ, Zhai Y (2009) Identification and SAR of novel diaminopyrimidines. Part 1: the discovery of RO-4, a dual P2X3/P2X2/3 antagonist for the treatment of pain. Bioorg Med Chem Lett 19:1628–1631PubMedCrossRefGoogle Scholar
  37. 37.
    Burgey CS (2011) Discovery of P2X3 receptor antagonists for the treatment of chronic pain. In: 241st ACS national meeting & exposition, Anaheim, CA, 27–31 March. MEDI-15Google Scholar
  38. 38.
    Cantin L, Bayrakdarian M, Buon C, Hu Y, Kennedy V, Laplante M, Leung C, Luo X, Popovic N, Rene O, Santhakumar V, Butterworth J, Godbout C, Gosselin M, Grazzini E, Labrecque J, Pare M, Projean D, Yu XH, Tomaszewski MJ (2010) Pyrrolopyrimidine-based P2X3 antagonists for the treatment of pain. In: 240th ACS national meeting, Boston, MA, 2–26 August. MEDI-474Google Scholar
  39. 39.
    Gever JR, Soto R, Henningsen RA, Martin RS, Hackos DH, Panicker S, Rubas W, Oglesby IB, Dillon MP, Mila ME, Burnstock G, Ford APDW (2010) AF-353 a novel potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. Br J Pharmacol 160:1387–1398PubMedGoogle Scholar
  40. 40.
    Raouf R, Chabot-Doré AJ, Ase AR, Blais D, Séguéla P (2007) Differential regulation of microgial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacol 53:496–504CrossRefGoogle Scholar
  41. 41.
    Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226PubMedCrossRefGoogle Scholar
  42. 42.
    Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29:998–1005PubMedCrossRefGoogle Scholar
  43. 43.
    Tsuda M, Toyomitsu E, Komatsu T, Masuda T, Kunifusa E, Nasu-Tada K, Koizumi S, Yamamoto K, Ando J, Inoue K (2008) Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 56:579–585PubMedCrossRefGoogle Scholar
  44. 44.
    Tsuda M, Tozaki-Saitoh H, Masuda T, Toyomitsu E, Tezuka T, Yamamoto T, Inoue K (2008) Lyn tyrosine kinase is required for P2X4 receptor upregulation and neuropathic pain after peripheral nerve activation. Glia 56:50–58PubMedCrossRefGoogle Scholar
  45. 45.
    Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F (2008) Up-Regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268PubMedCrossRefGoogle Scholar
  46. 46.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021PubMedCrossRefGoogle Scholar
  47. 47.
    Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942PubMedCrossRefGoogle Scholar
  48. 48.
    Trang T, Beggs S, Wan X, Salter MW (2009) P2X4 receptor mediated synthesis and release of brain derived neurotrophic factor in microglia is dependent on calcium and p38-MAPK. J Neurosci 29:3518–3528PubMedCrossRefGoogle Scholar
  49. 49.
    Bernier LP, Ase AR, Chevallier S, Blais D, Zhao Q, Boué-Grabot E, Logothetis D, Séguéla P (2008) Phosphoinositides regulate P2X4 ATP-gated channels through direct interactions. J Neurosci 28:12938–12945PubMedCrossRefGoogle Scholar
  50. 50.
    Jarvis MF, Khakh BS (2009) ATP-gated P2X cation-channels. Neuropharmacol 56:208–215CrossRefGoogle Scholar
  51. 51.
    Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532PubMedCrossRefGoogle Scholar
  52. 52.
    Muller CE (2010) Emerging structures and ligands for P2x3 AND P2X4 receptors—towards novel treatments of neuropathic pain. Purinergic Signalling 6:145–148PubMedCrossRefGoogle Scholar
  53. 53.
    Ferrari D, Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, DiVirgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176:3877–3883PubMedGoogle Scholar
  54. 54.
    MacKenzie A, Wilson HL, Kiss-Tosh E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 8:825–835CrossRefGoogle Scholar
  55. 55.
    Perregaux DG, Gabel CA (1994) Interleukin-1β maturation and release in response to ATP and nigericin. J Biol Chem 269:15195–15203PubMedGoogle Scholar
  56. 56.
    DiVirgilio F (2006) Purinergic signalling between axons and microglia. In: Chadwick DJ, Goode J (eds) Purinergic signalling in neuron-glia interactions. No. 276. Wiley, Chichester, pp 253–262CrossRefGoogle Scholar
  57. 57.
    Pelegrin P, Surprenant A (2009) The P2X7 receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Sig 5:129–137CrossRefGoogle Scholar
  58. 58.
    Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445PubMedGoogle Scholar
  59. 59.
    Chessell IP, Hatcher J, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CBA, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396PubMedCrossRefGoogle Scholar
  60. 60.
    Wolf G, Yirmiya R, Goshen I, Iverfeldt K, Holmlund L, Takeda K, Shavit Y (2004) Impairment of interleukin-1 (IL-1) signaling reduces basal pain sensitivity in mice: genetic, pharmacological and developmental aspects. Pain 104:471–480CrossRefGoogle Scholar
  61. 61.
    Honore P, Wade CL, Zhong C, Harris RR, Wu C, Ghayur T, Iwakura Y, Decker MW, Faltynek C, Sullivan J, Jarvis MF (2006) Interleukin-1ab gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Br Res 167:355–364CrossRefGoogle Scholar
  62. 62.
    Guile SD, Alcaraz L, Birkinshaw TN, Bowers KC, Ebden MR, Furber M, Stocks MJ (2009) Antagonists of the P2X7 receptor. From lead identification to drug development. J Med Chem 52:3123–3141PubMedCrossRefGoogle Scholar
  63. 63.
    Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151:571–579PubMedCrossRefGoogle Scholar
  64. 64.
    Donnelly-Roberts D, Namovic MT, Han P, Jarvis MF (2009) Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 157:1203–1214PubMedCrossRefGoogle Scholar
  65. 65.
    Beigi RD, Kertesy SB, Aquilina G, Dubyak GR (2003) Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor independent mechanisms. Br J Pharmacol 140:507–519PubMedCrossRefGoogle Scholar
  66. 66.
    Jo S, Bean BP (2011) Inhibition of neuronal voltage-gated sodium channels by brilliant blue g. Mol Pharmacol 80(2):247–257PubMedCrossRefGoogle Scholar
  67. 67.
    Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P, Harris R, Medrano AP, Carroll W, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2006) A-740003 (N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl) acetamide, a novel and selective P2X7 receptor antagonist dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385PubMedCrossRefGoogle Scholar
  68. 68.
    Nelson DW, Gregg RJ, Kort ME, Perez-Medrano A, Voight EA, Wang Y, Namovic MT, Grayson G, Donnelly-Roberts DL, Niforatos W, Honore P, Jarvis MF, Faltynek CR, Carroll WA (2006) Structure-activity relationship studies on a series of novel, substituted 1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem 49:3659–3666PubMedCrossRefGoogle Scholar
  69. 69.
    McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang X-F, Shieh C-C, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Nelson DW, Gregg RJ, Carroll WA, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146:1817–1828PubMedCrossRefGoogle Scholar
  70. 70.
    Broom DC, Matson DJ, Bradshaw E, Buck ME, Meade R, Coombs S, Matchett M, Ford KK, Yu W, Yuan J, Sun SH, Ochoa R, Krause JE, Wustrow DJ, Cortright DN (2008) Characterization of N-(adamantan-1-ylmethyl)-5-((3R-amino-pyrrolidin-1-yl)methyl)-2-chloro-benzamide, a P2X7 antagonist in animal models of pain and inflammation. J Pharm Exper Ther 327(3):620–633CrossRefGoogle Scholar
  71. 71.
    Furber M, (2008) P2X7 antagonists in a rheumatoid arthritis pain model. In: ACS national meeting, Philadelphia, PA. MEDI 237Google Scholar
  72. 72.
    Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y, Jarvis MF (2009) The anti-hyperalgesic effects of a selective P2X7 receptor antagonist are lost in IL-1ab knockout mice. Behav Br Res 204:77–81CrossRefGoogle Scholar
  73. 73.
    Hansen RR, Nielsen CK, Nasser A, Thomsen SIM, Eghorn LF, Pham Y, Schulenburg C, Syberg S, Ding M, Stojilkovic SS, Jorgensen NR, Heegaard AM (2011) P2X7 receptor deficient mice are susceptible to bone cancer pain. Pain 152:1766–1776PubMedCrossRefGoogle Scholar
  74. 74.
    Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553PubMedCrossRefGoogle Scholar
  75. 75.
    Friden M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M (2009) Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243PubMedCrossRefGoogle Scholar
  76. 76.
    Hitchcock SA (2008) Blood-brain barrier permeability considerations for CNS-targeted compound library design. Curr Op Chem Biol 12:318–323CrossRefGoogle Scholar
  77. 77.
    Blakemore DC, Bryans JS, Carnell P, Chessum NEA, Field MJ, Kinsella N, Kinsora JK, Osborne SA, Williams SC (2010) Synthesis and in vivo evaluation of 3-substituted gababutins. Bioorg Med Chem Lett 20(1):362–365PubMedCrossRefGoogle Scholar
  78. 78.
    Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DF, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5,-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4(5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzemesulfonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365PubMedCrossRefGoogle Scholar
  79. 79.
    Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret JP, Ford-Hutchinson AW, Gordon R, Greig G, Gresser M, Guay J, Kargman S, Léger S, Mancini JA, O’Neill G, Ouellet M, Rodger IW, Thérien M, Wang Z, Webb JK, Wong E, Chan CC et al (1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharmacol 121(1):105–117PubMedCrossRefGoogle Scholar
  80. 80.
    Wei Q, Zhou DH, Shen QX, Chen J, Chen LW, Wang TL, Pei G, Chi ZQ (2000) Human mu-opioid receptor overexpressed in Sf9 insect cells functionally coupled to endogenous Gi/o proteins. Cell Res 10(2):93–102PubMedCrossRefGoogle Scholar
  81. 81.
    Cashman JR, Ghirmai S (2009) Inhibition of serotonin and norepinephrin reuptake and inhibition of phosphodiesterase by multi-target inhibitors as potential agents for depression. Bioorg Med Chem 17:6890–6897PubMedCrossRefGoogle Scholar
  82. 82.
    Jarvis MF, Khakh BS (2009) ATP-gated P2X cation channels. Neuropharmacology 56:208–215PubMedCrossRefGoogle Scholar
  83. 83.
    Jacobson KA (2010) P2X and P2Y receptors. Tocris Biosci Sci Rev Ser 1:15Google Scholar
  84. 84.
    Gunosewoyo H, Kassiou M (2010) P2X purinergic receptor ligands: recently patented compounds. Exp Op Ther Pat 20(5):625–646CrossRefGoogle Scholar
  85. 85.
    Jahangir A, Alam M, Carter DS, Dillon MP, Du Bois DJ, Ford APDW, Gever JR, Lin C, Wagner PJ, Zhai Y, Zira J (2009) Identification and SAR of novel diaminopyrimidines. Part 2: the discovery of RO-51, a potent and selective, dual P2X3/P2X2/3 antagonist for the treatment of pain. Bioorg Med Chem Lett 19:1632–1635PubMedCrossRefGoogle Scholar
  86. 86.
    Brotherton-Pleiss CE, Dillon MP, Ford APDW, Gever JR, Carter DS, Gleason SK, Lin CJ, Moore AG, Thompson AW, Villa M, Zhai Y (2010) Discovery and optimization of RO-85, a novel drug-like, potent, and selective P2X3 receptor anatagonist. Bioorg Med Chem Lett 20:1031–1036PubMedCrossRefGoogle Scholar
  87. 87.
    Prous (2009) 659156. Available at http://.integrity.thomson-pharma.com. Drug Data Report 31(6):538
  88. 88.
    Prous (2010) 669469, 690966, 703690. Available at http://integrity.thomson-pharma.com. Drug Data Report 32(3):241
  89. 89.
    Shieh C-C, Jarvis MF, Lee C-H, Perner RJ (2006) P2X receptor ligands and pain. Exp Op Ther Pat 16(8):1113–1127CrossRefGoogle Scholar
  90. 90.
    Jiang L-H, Mackenzie AB, North RA, Surprenant A (2000) Brilliant Blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88PubMedGoogle Scholar
  91. 91.
    Romagnoli R, Baraldi PG, Carrion MD, Cara CL, Preti D, Cruz-Lopez O, Tabrizi MA, Moorman AR, Gessi S, Fogli E, Sacchetto V, Borea PA (2007) From tyrosine to glycine: synthesis and biological activity of potent antagonists of the purinergic P2X7 receptor. J Med Chem 50(15):3706–3715PubMedCrossRefGoogle Scholar
  92. 92.
    Romagnoli R, Baraldi PG, Cruz-Lopez O, Lopez-Cara C, Preti D, Borea PA, Gessi S (2008) The P2X7 receptor as a therapeutic target. Exp Op Ther Targ 12(5):647–661CrossRefGoogle Scholar
  93. 93.
    Prous (2010) entry 669469. Available at http://integrity.thompsonpharma.com. Exp Pharmacol Rep
  94. 94.
    Chen X, Pierce B, Naing W, Grapperhaus ML, Phillion DP (2010) Discovery of 2-chloro-N-((4,4-difluoro-1-hydroxycyclohexyl)methyl)-5-(5-fluoropyrimidin-2-yl)benzamide as a potent and CNS penetrable P2X7 receptor antagonist. Bioorg Med Chem Lett 20(10):3107–3111PubMedCrossRefGoogle Scholar
  95. 95.
    Prous (2010) entry 703690. Available at http://integrity.thompsonpharma.com. Exp Pharmacol Rep

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rebecca J. Gum
    • 1
  • Brian Wakefield
    • 2
  • Michael F. Jarvis
    • 3
  1. 1.Neuroscience Research, Global Pharmaceutical Research and DevelopmentAbbott LaboratoriesAbbott ParkUSA
  2. 2.Neuroscience Research, Global Pharmaceutical Research and DevelopmentAbbott LaboratoriesAbbott ParkUSA
  3. 3.Neuroscience Research, Global Pharmaceutical Research and DevelopmentAbbott LaboratoriesAbbott ParkUSA

Personalised recommendations