Purinergic Signalling

, Volume 8, Issue 2, pp 207–221 | Cite as

Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells

  • Rosa Mancinelli
  • Tiziana Pietrangelo
  • Geoffrey Burnstock
  • Giorgio Fanò
  • Stefania Fulle
Original Article


Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5′-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca2+ concentrations that results in membrane hyperpolarisation through Ca2+-activated K+ channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca2+ is due to release of Ca2+ from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.


Transcriptome Myogenesis GTP 



Bovine serum albumin


Intracellular calcium ion concentration


Standard differentiating medium


Guanosine 5′-triphosphate


Myogenic regulatory factors


Myosin heavy chain


Synthetic differentiating medium


Reactive blue 2


  1. 1.
    Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766PubMedCrossRefGoogle Scholar
  2. 2.
    Chambers RL, McDermott JC (1996) Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson JE (1998) Murray L. Barr Award Lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back! Biochem Cell Biol 76:13–26PubMedCrossRefGoogle Scholar
  4. 4.
    McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11:497–504PubMedCrossRefGoogle Scholar
  5. 5.
    Megeney LA, Rudnicki MA (1995) Determination versus differentiation and the MyoD family of transcription factors. Biochem Cell Biol 73:723–732PubMedCrossRefGoogle Scholar
  6. 6.
    Perry RL, Rudnicki MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci 5:D750–D767PubMedCrossRefGoogle Scholar
  7. 7.
    Friday BB, Mitchell PO, Kegley KM, Pavlath GK (2003) Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71:217–227PubMedCrossRefGoogle Scholar
  8. 8.
    Miller JB, Schaefer L, Dominov JA (1999) Seeking muscle stem cells. Curr Top Dev Biol 43:191–219PubMedCrossRefGoogle Scholar
  9. 9.
    Bailey P, Holowacz T, Lassar AB (2001) The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13:679–689PubMedCrossRefGoogle Scholar
  10. 10.
    Lassar AB, Skapek SX, Novitch B (1994) Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol 6:788–794PubMedCrossRefGoogle Scholar
  11. 11.
    Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADSbox transcription factors. Proc Natl Acad Sci USA 93:9366–9373PubMedCrossRefGoogle Scholar
  12. 12.
    Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000PubMedCrossRefGoogle Scholar
  13. 13.
    Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617PubMedCrossRefGoogle Scholar
  14. 14.
    Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10 T1/2 fibroblasts. EMBO J 8:701–709PubMedGoogle Scholar
  15. 15.
    Thayer MJ, Tapscott SJ, Davis RL, Wright WE, Lassar AB, Weintraub H (1989) Positive autoregulation of the myogenic determination gene MyoD1. Cell 58(2):241–248PubMedCrossRefGoogle Scholar
  16. 16.
    Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506PubMedCrossRefGoogle Scholar
  17. 17.
    Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535PubMedCrossRefGoogle Scholar
  18. 18.
    Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17:203–209PubMedCrossRefGoogle Scholar
  19. 19.
    Lindon C, Montarras D, Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140:111–118PubMedCrossRefGoogle Scholar
  20. 20.
    Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF (1991) Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol 147:144–156PubMedCrossRefGoogle Scholar
  21. 21.
    Naya FS, Olson E (1999) MEF2: a transcriptional target for signalling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688PubMedCrossRefGoogle Scholar
  22. 22.
    Andres V, Walsh K (1996) Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657–666PubMedCrossRefGoogle Scholar
  23. 23.
    Franklin DS, Xiong Y (1996) Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol Biol Cell 7:1587–1599PubMedGoogle Scholar
  24. 24.
    Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH (2004) Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J 18(2):403–405PubMedGoogle Scholar
  25. 25.
    Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS (2003) Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 226(1):128–138PubMedCrossRefGoogle Scholar
  26. 26.
    Pietrangelo T, Mariggiò MA, Lorenzon P et al (2002) Characterization of specific GTP binding sites in C2C12 mouse skeletal muscle cells. J Muscle Res Cell Motil 23:107–118PubMedCrossRefGoogle Scholar
  27. 27.
    Pietrangelo T, Fioretti B, Mancinelli R, Catacuzzeno L, Franciolini F, Fanò G, Fulle S (2006) Extracellular guanosine-5′-triphosphate modulates myogenesis via intermediate Ca2+-activated K+ currents in C2C12 mouse cells. J Physiol 572(3):721–733PubMedGoogle Scholar
  28. 28.
    Pietrangelo T, Guarnieri S, Fulle S, Fanò G, Mariggiò MA (2006) Signal transduction events induced by extracellular guanosine 5′ triphosphate in excitable cells. Purinergic Signal 2(4):633–636PubMedCrossRefGoogle Scholar
  29. 29.
    Inoue K, Nakazawa K, Ohara-Imaizumi M, Obama T, Fujimori K, Takanaka A (1991) Antagonism by reactive blue 2 but not by brilliant blue G of extracellular ATP-evoked responses in PC12 phaeochromocytoma cells. Br J Pharmacol 102(4):851–854PubMedGoogle Scholar
  30. 30.
    Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10(2):103–111PubMedGoogle Scholar
  31. 31.
    Dulong S, Goudenege S, Vuillier-Devillers K, Manenti S, Poussard S, Cottin P (2004) Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Cα and calpain proteolytic cleavage. Biochem J 382:1015–1023PubMedCrossRefGoogle Scholar
  32. 32.
    Wakabayashi-Takai E, Noguchi S, Ozawa E (2001) Identification of myogenesis-dependent transcriptional enhancers in promoter region of mouse gamma-sarcoglycan gene. Eur J Biochem 268(4):948–957PubMedCrossRefGoogle Scholar
  33. 33.
    Musumeci O, Aguennouz M, Comi GP, Rodolico C, Autunno M, Bordoni A, Baratta S, Taroni F, Vita G, Toscano A (2007) Identification of the infant-type R631C mutation in patients with the benign muscular form of CPT2 deficiency. Neuromuscul Disord 17(11–12):960–963PubMedCrossRefGoogle Scholar
  34. 34.
    Wieser T, Kraft B, Kress HG (2008) No carnitine palmitoyltransferase deficiency in skeletal muscle in 18 malignant hyperthermia susceptible individuals. Neuromuscul Disord 18(6):471–474PubMedCrossRefGoogle Scholar
  35. 35.
    Hirabayashi Y, Kanamori A, Nomura KH, Nomura K (2004) The acetyl-CoA transporter family SLC33. Pflugers Arch 447(5):760–762PubMedCrossRefGoogle Scholar
  36. 36.
    Massey LK, Mah AL, Ford DL, Miller J, Liang J, Doong H, Monteiro MJ (2004) Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins. J Alzheimers Dis 6(1):79–92PubMedGoogle Scholar
  37. 37.
    Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ (2008) Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 3(11):e3638PubMedCrossRefGoogle Scholar
  38. 38.
    Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) αl(E)-Catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. PNAS 92(19):8813–8817PubMedCrossRefGoogle Scholar
  39. 39.
    Capkovic KL, Stevenson S, Johnson MC, Thelen JJ, Cornelison DD (2008) Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation. Exp Cell Res 314(7):1553–1565PubMedCrossRefGoogle Scholar
  40. 40.
    Ishido M, Uda M, Masuhara M, Kami K (2006) Alterations of M-cadherin, neural cell adhesion molecule and beta-catenin expression in satellite cells during overload-induced skeletal muscle hypertrophy. Acta Physiol (Oxf) 187(3):407–418CrossRefGoogle Scholar
  41. 41.
    Behrendt N, Jensen ON, Engelholm LH, Mørtz E, Mann M, Danø K (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275(3):1993–2002PubMedCrossRefGoogle Scholar
  42. 42.
    Phinney DG, Gray AJ, Hill K, Pandey A (2005) Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338(4):1759–1765PubMedCrossRefGoogle Scholar
  43. 43.
    Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13(12):1467–1475PubMedCrossRefGoogle Scholar
  44. 44.
    Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS (2001) Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2(3):167–179PubMedGoogle Scholar
  45. 45.
    Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, Kraft A (1999) The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene 18(27):4022–4031PubMedCrossRefGoogle Scholar
  46. 46.
    Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS (2005) Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 3(3):170–181PubMedCrossRefGoogle Scholar
  47. 47.
    Agarwal N, Hardt T, Brero A, Nowak D, Rothbauer U, Becker A, Leonhardt H, Cardoso MC (2007) MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res 35(16):5402–5408PubMedCrossRefGoogle Scholar
  48. 48.
    Kalitsis P, Fowler KJ, Griffiths B, Earle E, Chow CW, Jamsen K, Choo KH (2005) Increased chromosome instability but not cancer predisposition in haploinsufficient Bub3 mice. Genes Chromosomes Cancer 44(1):29–36PubMedCrossRefGoogle Scholar
  49. 49.
    Pandorf CE, Jiang WH, Qin AX, Bodell PW, Baldwin KM, Haddad F (2009) Calcineurin plays a modulatory role in loading-induced regulation of type I myosin heavy chain gene expression in slow skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297(4):R1037–R1048PubMedCrossRefGoogle Scholar
  50. 50.
    Riuzzi F, Sorci G, Donato R (2007) RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol 171(3):947–961PubMedCrossRefGoogle Scholar
  51. 51.
    Knight GE, Burnstock G (1995) Responses of the aorta of the garter snake (Thamnophis sirtalis parietalis) to purines. Br J Pharmacol 114(1):41–48PubMedGoogle Scholar
  52. 52.
    Deponti D, François S, Baesso S, Sciorati C, Innocenzi A, Broccoli V, Muscatelli F, Meneveri R, Clementi E, Cossu G, Brunelli S (2007) Necdin mediates skeletal muscle regeneration by promoting myoblast survival and differentiation. J Cell Biol 179(2):305–319PubMedCrossRefGoogle Scholar
  53. 53.
    Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102(6):777–786PubMedCrossRefGoogle Scholar
  54. 54.
    Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172(1):91–102PubMedCrossRefGoogle Scholar
  55. 55.
    Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18(24):6867–6872PubMedCrossRefGoogle Scholar
  56. 56.
    Carnac G, Primig M, Kitzmann M, Chafey P, Tuil D, Lamb N, Fernandez A (1998) RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Mol Biol Cell 9(7):1891–1902PubMedGoogle Scholar
  57. 57.
    Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289(5488):2363–2366PubMedCrossRefGoogle Scholar
  58. 58.
    Tsivitse S (2010) Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 6(3):268–281PubMedCrossRefGoogle Scholar
  59. 59.
    Brack A, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from Notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59PubMedCrossRefGoogle Scholar
  60. 60.
    Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067PubMedCrossRefGoogle Scholar
  61. 61.
    Hlaing M, Spitz P, Padmanabhan K, Cabezas B, Barker CS, Bernstein HS (2004) E2F-1 regulates the expression of a subset of target genes during skeletal myoblast hypertrophy. J Biol Chem 279(42):43625–43633PubMedCrossRefGoogle Scholar
  62. 62.
    Liu J, Burkin DJ, Kaufman SJ (2008) Increasing alpha 7 beta 1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. Am J Physiol Cell Physiol 294(2):C627–C640PubMedCrossRefGoogle Scholar
  63. 63.
    Allikian MJ, Hack AA, Mewborn S, Mayer U, McNally EM (2004) Genetic compensation for sarcoglycan loss by integrin alpha7beta1 in muscle. J Cell Sci 117(Pt 17):3821–3830PubMedCrossRefGoogle Scholar
  64. 64.
    Jethanandani P, Kramer RH (2005) Alpha7 integrin expression is negatively regulated by deltaEF1 during skeletal myogenesis. J Biol Chem 280(43):36037–36046PubMedCrossRefGoogle Scholar
  65. 65.
    de León MB, Montañez C, Gómez P, Morales-Lázaro SL, Tapia-Ramírez V, Valadez-Graham V, Recillas-Targa F, Yaffe D, Nudel U, Cisneros B (2005) Dystrophin Dp71 expression is down-regulated during myogenesis: role of Sp1 and Sp3 on the Dp71 promoter activity. J Biol Chem 280(7):5290–5299PubMedCrossRefGoogle Scholar
  66. 66.
    Pietrangelo T, Puglielli C, Mancinelli R, Beccafico S, Fanò G, Fulle S (2009) Molecular basis of the myogenic profile of aged human skeletal muscle satellite cells during differentiation. Exp Gerontol 44(8):523–531PubMedCrossRefGoogle Scholar
  67. 67.
    Moore SE, Thompson J, Kirkness V, Dickson JG, Walsh FS (1987) Skeletal muscle neural cell adhesion molecule (N-CAM): changes in protein and mRNA species during myogenesis of muscle cell lines. J Cell Biol 105(3):1377–1386PubMedCrossRefGoogle Scholar
  68. 68.
    Kubo Y (1991) Comparison of initial stages of muscle differentiation in rat and mouse myoblastic and mouse mesodermal stem cell lines. J Physiol 442:743–759PubMedGoogle Scholar
  69. 69.
    Kowenz-Leutz E, Leutz A (1999) A C/EBPβ isoform recruits the SWI/SNF complex to activate myeloid genes. Mol Cell 4(5):735–743PubMedCrossRefGoogle Scholar
  70. 70.
    Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 282(9):6517–6524PubMedCrossRefGoogle Scholar
  71. 71.
    Dalla Libera L, Ravara B, Gobbo V, Tarricone E, Vitadello M, Biolo G, Vescovo G, Gorza L (2009) A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J Appl Physiol 107(2):549–557PubMedCrossRefGoogle Scholar
  72. 72.
    Sacht G, Brigelius-Flohe R, Kiess M, Sztajer H, Flohe L (1999) ATPsensitive association of mortalin with the IL-1 receptor type I. Biofactors 9:49–60PubMedCrossRefGoogle Scholar
  73. 73.
    Vary TC, Owens EL, Beers JK, Verner K, Cooney RN (1996) Sepsis inhibits synthesis of myofibrillar and sarcoplasmic proteins: modulation by interleukin-1 receptor antagonist. Shock 6(1):13–18PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE (2009) IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol 20(3):604–612PubMedCrossRefGoogle Scholar
  75. 75.
    Swant JD, Rendon BE, Symons M, Mitchell RA (2005) Rho GTPase-dependent signalling is required for macrophage migration inhibitory factor-mediated expression of cyclin D1. J Biol Chem 280(24):23066–23072PubMedCrossRefGoogle Scholar
  76. 76.
    Mancinelli R, Kern H, Fulle S, Carraro U, Zampieri S, La Rovere R, Fanò G and Pietrangelo T (2011) Transcriptional profile of denervated vastus lateralis muscle derived from a patient 8 months after spinal cord injury: a case-report. International Journal of Immunopathology and Pharmacology (in press)Google Scholar
  77. 77.
    Burnstock G (2004) Introduction: P2 receptors. Curr Top Med Chem 4(8):793–803PubMedCrossRefGoogle Scholar
  78. 78.
    Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140(1):1–22PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rosa Mancinelli
    • 1
    • 2
    • 3
  • Tiziana Pietrangelo
    • 1
    • 2
    • 4
  • Geoffrey Burnstock
    • 5
  • Giorgio Fanò
    • 1
    • 2
    • 4
  • Stefania Fulle
    • 1
    • 2
    • 3
  1. 1.Department of Neuroscience and ImagingUniversity “G. d’Annunzio” Chieti-PescaraChietiItaly
  2. 2.Interuniversity Institute of Myology (IIM)ChietiItaly
  3. 3.Cellular Physiology Unit, Center for Excellence on Ageing (CeSI)“G. d’Annunzio” FoundationChietiItaly
  4. 4.Human Physiology Unit, Center for Excellence on Ageing (CeSI),-Clinical Research Center (CRC)“G. d’Annunzio” FoundationChietiItaly
  5. 5.Autonomic Neuroscience CentreUniversity College Medical SchoolLondonUK

Personalised recommendations