Purinergic Signalling

, Volume 8, Issue 1, pp 71–80 | Cite as

Purine receptors and Ca2+ signalling in the human blood–brain barrier endothelial cell line hCMEC/D3

  • Willem Bintig
  • Daniela Begandt
  • Barbara Schlingmann
  • Linda Gerhard
  • Maria Pangalos
  • Lutz Dreyer
  • Natalija Hohnjec
  • Pierre-Olivier Couraud
  • Ignacio A. Romero
  • Babette B. Weksler
  • Anaclet NgezahayoEmail author
Original Article


The expression and physiology of purine receptors of the human blood–brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca2+-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y2-, P2Y6-, P2Y11- as well as the ionotropic P2X4-, P2X5- and P2X7-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca2+ concentration ([Ca2+]i) from 150 to 300 nM in single cells. The change in [Ca2+]i corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αβ-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP3 cascade-mediated Ca2+ release, indicating that the nucleotide-induced Ca2+ signal was mainly related to P2Y2, 6 and 11 receptors. The gene silencing of the P2Y2 receptor reduced the ATP- or UTP-induced Ca2+ signal and suppressed the Ca2+ signal mediated by P2Y6 and P2Y11 more specific agonists like UDP (P2Y6), BzATP (P2Y11) and ATPγS (P2Y11). This report identifies the P2Y2 receptor subtype as the main purine receptor involved in Ca2+ signalling of the hCMEC/D3 cells.


P2 receptors G-Protein Neurovascular unit Gene silencing siRNA 



The authors thank Prof. Dr. Helge Küster and his team for discussion on the manuscript. The work was supported by the NANOTOME project (Biophotonik III) and by Boehringer Ingelheim International.


  1. 1.
    Drewes LR (2001) Molecular architecture of the brain microvasculature: perspective on blood–brain transport. J Mol Neurosci 16:93–98PubMedCrossRefGoogle Scholar
  2. 2.
    Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53PubMedCrossRefGoogle Scholar
  3. 3.
    Banks WA (1999) Physiology and pathology of the blood–brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J Neurovirol 6:538–555CrossRefGoogle Scholar
  4. 4.
    Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376PubMedCrossRefGoogle Scholar
  5. 5.
    del Zoppo GJ (2008) Virchow’s triad: the vascular basis of cerebral injury. Rev Neurol Dis 5:S12–S21PubMedGoogle Scholar
  6. 6.
    Paemeleire K (2002) Calcium signaling in and between brain astrocytes and endothelial cells. Acta Neurol Belg 102:137–140PubMedGoogle Scholar
  7. 7.
    del Zoppo GJ (2010) The neurovascular unit in the setting of stroke. J Intern Med 67:156–171CrossRefGoogle Scholar
  8. 8.
    del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972–982PubMedCrossRefGoogle Scholar
  9. 9.
    Stolp HB, Dziegielewska KM (2009) Role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35:132–146PubMedCrossRefGoogle Scholar
  10. 10.
    Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA (2010) P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 41:356–366PubMedCrossRefGoogle Scholar
  11. 11.
    Lazarowski ER, Harden TK (1999) Quantification of extracellular UTP using a sensitive enzymatic assay. Br J Pharmacol 127:1272–1278PubMedCrossRefGoogle Scholar
  12. 12.
    Xu HL, Pelligrino DA (2007) ATP release and hydrolysis contribute to rat pial arteriolar dilatation elicited by neuronal activation. Exp Physiol 92:647–651PubMedCrossRefGoogle Scholar
  13. 13.
    Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32:79–87PubMedCrossRefGoogle Scholar
  14. 14.
    Pineau I, Lacroix S (2009) Endogenous signals initiating inflammation in the injured nervous system. Glia 57:351–361PubMedCrossRefGoogle Scholar
  15. 15.
    King BF, Townsend-Nicholson A (2003) Nucleotide and nucleoside receptors. Tocris Rev 23:1–12Google Scholar
  16. 16.
    von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432CrossRefGoogle Scholar
  17. 17.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer W, Krügel U (2007) P2Y receptors: focus on structural, pharmacological and functional aspects in the brain. Curr Med Chem 14:2429–2455PubMedCrossRefGoogle Scholar
  19. 19.
    Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452:552–562PubMedCrossRefGoogle Scholar
  20. 20.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  21. 21.
    Albert JL, Boyle JP, Roberts JA, Challiss RA, Gubby SE, Boarder MR (1997) Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Br J Pharmacol 122:935–941PubMedCrossRefGoogle Scholar
  22. 22.
    Sipos I, Dömötör E, Abbott NJ, Adam-Vizi V (2000) The pharmacology of nucleotide receptors on primary rat brain endothelial cells grown on a biological extracellular matrix: effects on intracellular calcium concentration. Br J Pharmacol 131:1195–1203PubMedCrossRefGoogle Scholar
  23. 23.
    Anwar Z, Albert JL, Gubby SE, Boyle JP, Roberts JA, Webb TE, Boarder MR (1999) Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells. Br J Pharmacol 128:465–471PubMedCrossRefGoogle Scholar
  24. 24.
    Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1884PubMedGoogle Scholar
  25. 25.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  26. 26.
    Bintig W, Baumgart J, Walter JW, Heisterkamp A, Lubatschowski H, Ngezahayo A (2009) Purinergic signalling in rat GFSHR-17 granulosa cells: an in vitro model of granulosa cells in maturing follicles. J Bioenerg Biomembr 41:85–94PubMedCrossRefGoogle Scholar
  27. 27.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108PubMedCrossRefGoogle Scholar
  28. 28.
    Baier MC, Keck M, Gödde V, Niehaus K, Küster H, Hohnjec N (2010) Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152:1000–1014PubMedCrossRefGoogle Scholar
  29. 29.
    Lazarowski ER, Watt WC, Stutts MJ, Brown HA, Boucher RC, Harden TK (1996) Enzymatic synthesis of UTPγS, a potent hydrolysis resistant agonist of P2U-purinoceptors. Br J Pharmacol 117:203–209PubMedGoogle Scholar
  30. 30.
    Brunschweiger A, Müller CE (2006) P2 receptors activated by uracil nucleotides—an update. Curr Med Chem 12:763–771Google Scholar
  31. 31.
    Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5:75–89PubMedCrossRefGoogle Scholar
  32. 32.
    Jacobson KA, Boeynaems JM (2010) P2Y nucleotide receptors: promise of therapeutic applications. Drug Discov Today 15:570–578PubMedCrossRefGoogle Scholar
  33. 33.
    Mamedova LK, Joshi BV, Gao ZG, von Kügelgen I, Jacobson KA (2004) Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochem Pharmacol 67:1763–1770PubMedCrossRefGoogle Scholar
  34. 34.
    Ullmann H, Meis S, Hongwiset D, Marzian C, Wiese M, Nickel P, Communi D, Boeynaems JM, Wolf C, Hausmann R, Schmalzing G, Kassack MU (2005) Synthesis and structure activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem 48:7040–7048PubMedCrossRefGoogle Scholar
  35. 35.
    Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE, Shay JW (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet 21:115–118PubMedCrossRefGoogle Scholar
  36. 36.
    Ouellette M, McDaniel LD, Wright WE, Shay JW, Schultz RA (2000) The establishment of telomerase -immortalized cell line representing human chromosome instability syndromes. Hum Mol Genet 9:403–411PubMedCrossRefGoogle Scholar
  37. 37.
    Poller B, Gutmann H, Krähenbühl S, Weksler B, Romero I, Couraud PO, Tuffin G, Drewe J, Huwyler J (2008) The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem 107:1358–1368PubMedCrossRefGoogle Scholar
  38. 38.
    Hansen MR, Krabbe S, Novak I (2008) Purinergic receptors and calcium signalling in human pancreatic duct cell lines. Cell Physiol Biochem 22:157–168PubMedCrossRefGoogle Scholar
  39. 39.
    Burnstock G (2006) Purinergic signalling—an overview. Novartis Found Symp 276:46–48Google Scholar
  40. 40.
    Wang L, Karlsson L, Moses S, Hultgårdh-Nilsson A, Andersson M, Borna C, Gudbartsson T, Jern S, Erlinge D (2002) P2 receptor expression profiles in human vascular smooth muscle cells and endothelial cells. J Cardiovasc Pharmacol 40:841–853PubMedCrossRefGoogle Scholar
  41. 41.
    Hillmann P, Ko GY, Spinrath A, Raulf A, von Kügelgen I, Wolff SC, Nicholas RA, Kostenis E, Höltje HD, Müller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52:2762–2775PubMedCrossRefGoogle Scholar
  42. 42.
    von Kügelgen I, Wetter A (2000) Molecular pharmacology of P2Y-receptors. Naunyn SchmiedebergsArch Pharmacol 362:310–323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Willem Bintig
    • 1
  • Daniela Begandt
    • 1
  • Barbara Schlingmann
    • 1
    • 2
  • Linda Gerhard
    • 1
  • Maria Pangalos
    • 1
  • Lutz Dreyer
    • 1
  • Natalija Hohnjec
    • 3
  • Pierre-Olivier Couraud
    • 4
    • 5
    • 6
  • Ignacio A. Romero
    • 7
  • Babette B. Weksler
    • 8
  • Anaclet Ngezahayo
    • 1
    • 2
    Email author
  1. 1.Institute of BiophysicsLeibniz University HannoverHannoverGermany
  2. 2.Center of Systemic Neurosciences (ZSN)HannoverGermany
  3. 3.Institute for Plant Genetics, Unit IV-Plant GenomicsLeibniz University HannoverHannoverGermany
  4. 4.INSERM, U1016Institut CochinParisFrance
  5. 5.CNRS, UMR8104ParisFrance
  6. 6.Université Paris DescartesParisFrance
  7. 7.Department of Biological SciencesThe Open UniversityWalton HallUK
  8. 8.Weill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations