Purinergic Signalling

, Volume 7, Issue 4, pp 381–392 | Cite as

Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view

  • Helio Miranda Costa-Junior
  • Camila Marques-da-Silva
  • Flávia Sarmento Vieira
  • Leonardo Campos Monção-Ribeiro
  • Robson Coutinho-Silva
Original Article

Abstract

For decades, scientists have described numerous protein pathways and functions. Much of a protein’s function depends on its interactions with different partners, and those partners can change depending on the cell type or system. The P2X7 receptor (P2X7R) is one such multifunctional protein that is related to multiple partners and signaling pathways. The relationship between P2X7R and different enzymes involved in lipid metabolism represents a relatively new field in P2X7R research. This field of research began in epithelial cells and currently includes immune and nervous cells. The P2X7R-lipid metabolism pathway is related to many biological functions of P2X7R, such as cell death and pathogen clearance, and this signaling pathway may be involved in many functions that are dependent on bioactive lipids. In the present review, we will attempt to summarize data related to the P2X7R-lipid metabolism pathway, focusing on signaling pathways and their biological relevance to the immune system and infection.

Keywords

P2X7 receptor Phospholipids Ceramide Phospholipases Sphingomyelinases Lipid metabolism Intracellular signaling 

Notes

Funding support

This work was supported by funds from the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico do Brasil (CNPq), the Programa de Núcleos de Excelência, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, and the Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INCT-INPeTAm/CNPq/MCT).

References

  1. 1.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124PubMedGoogle Scholar
  2. 2.
    Alvarez Y, Valera I, Municio C, Hugo E, Padron F, Blanco L, Rodriguez M, Fernandez N, Crespo MS (2010) Eicosanoids in the innate immune response: TLR and non-TLR routes. Mediators Inflamm 2010:1–14Google Scholar
  3. 3.
    Mater MK, Thelen AP, Jump DB (1999) Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. J Lipid Res 40(6):1045–1052PubMedGoogle Scholar
  4. 4.
    Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, Kordula T, Milstien S, Lesnefsky EJ, Spiegel S (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25(2):600–612PubMedGoogle Scholar
  5. 5.
    Ding R, Han J, Tian Y, Guo R, Ma X (2011) Sphingosine-1-phosphate attenuates lung injury induced by intestinal ischemia/reperfusion in mice: role of inducible nitric-oxide synthase. Inflammation. doi: 10.1007/s10753-10011-19301-10750
  6. 6.
    Chiba Y, Suzuki K, Kurihara E, Uechi M, Sakai H, Misawa M (2010) Sphingosine-1-phosphate aggravates antigen-induced airway inflammation in mice. Open Respir Med J 4:82–85PubMedGoogle Scholar
  7. 7.
    Nagasawa K, Miyaki J, Kido Y, Higashi Y, Nishida K, Fujimoto S (2009) Possible involvement of PPAR gamma in the regulation of basal channel opening of P2X7 receptor in cultured mouse astrocytes. Life Sci 84(23–24):825–831PubMedGoogle Scholar
  8. 8.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24(3):509–581PubMedGoogle Scholar
  9. 9.
    Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42(1):3–8PubMedGoogle Scholar
  10. 10.
    Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372PubMedGoogle Scholar
  11. 11.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58(3):281–341PubMedGoogle Scholar
  12. 12.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50(3):413–492PubMedGoogle Scholar
  13. 13.
    Hyman MC, Petrovic-Djergovic D, Visovatti SH, Liao H, Yanamadala S, Bouis D, Su EJ, Lawrence DA, Broekman MJ, Marcus AJ, Pinsky DJ (2009) Self-regulation of inflammatory cell trafficking in mice by the leukocyte surface apyrase CD39. J Clin Invest 119(5):1136–1149PubMedGoogle Scholar
  14. 14.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067PubMedGoogle Scholar
  15. 15.
    Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J 20(22):6347–6358PubMedGoogle Scholar
  16. 16.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738PubMedGoogle Scholar
  17. 17.
    Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269(21):15195–15203PubMedGoogle Scholar
  18. 18.
    Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159(3):1451–1458PubMedGoogle Scholar
  19. 19.
    Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185(3):579–582PubMedGoogle Scholar
  20. 20.
    Moon H, Na HY, Chong KH, Kim TJ (2006) P2X7 receptor-dependent ATP-induced shedding of CD27 in mouse lymphocytes. Immunol Lett 102(1):98–105PubMedGoogle Scholar
  21. 21.
    Bradford MD, Soltoff SP (2002) P2X7 receptors activate protein kinase D and p42/p44 mitogen-activated protein kinase (MAPK) downstream of protein kinase C. Biochem J 366(Pt 3):745–755PubMedGoogle Scholar
  22. 22.
    Armstrong S, Pereverzev A, Dixon SJ, Sims SM (2009) Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts. J Cell Sci 122(Pt 1):136–144PubMedGoogle Scholar
  23. 23.
    Denlinger LC, Fisette PL, Sommer JA, Watters JJ, Prabhu U, Dubyak GR, Proctor RA, Bertics PJ (2001) Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J Immunol 167(4):1871–1876PubMedGoogle Scholar
  24. 24.
    Ortega F, Perez-Sen R, Delicado EG, Miras-Portugal MT (2009) P2X7 nucleotide receptor is coupled to GSK-3 inhibition and neuroprotection in cerebellar granule neurons. Neurotox Res 15(3):193–204PubMedGoogle Scholar
  25. 25.
    Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM, Falzoni S, Pinton P, Rizzuto R, Olson MF, Di Virgilio F (2003) Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell 14(7):2655–2664PubMedGoogle Scholar
  26. 26.
    Wilson HL, Wilson SA, Surprenant A, North RA (2002) Epithelial membrane proteins induce membrane blebbing and interact with the P2X7 receptor C terminus. J Biol Chem 277(37):34017–34023PubMedGoogle Scholar
  27. 27.
    Garcia-Marcos M, Perez-Andres E, Tandel S, Fontanils U, Kumps A, Kabre E, Gomez-Munoz A, Marino A, Dehaye JP, Pochet S (2006) Coupling of two pools of P2X7 receptors to distinct intracellular signaling pathways in rat submandibular gland. J Lipid Res 47(4):705–714PubMedGoogle Scholar
  28. 28.
    Alzola E, Perez-Etxebarria A, Kabre E, Fogarty DJ, Metioui M, Chaib N, Macarulla JM, Matute C, Dehaye JP, Marino A (1998) Activation by P2X7 agonists of two phospholipases A2 (PLA2) in ductal cells of rat submandibular gland. Coupling of the calcium-independent PLA2 with kallikrein secretion. J Biol Chem 273(46):30208–30217PubMedGoogle Scholar
  29. 29.
    Witting A, Walter L, Wacker J, Moller T, Stella N (2004) P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc Natl Acad Sci USA 101(9):3214–3219PubMedGoogle Scholar
  30. 30.
    Carrasquero LM, Delicado EG, Sanchez-Ruiloba L, Iglesias T, Miras-Portugal MT (2010) Mechanisms of protein kinase D activation in response to P2Y(2) and P2X7 receptors in primary astrocytes. Glia 58(8):984–995PubMedGoogle Scholar
  31. 31.
    Garcia-Marcos M, Pochet S, Marino A, Dehaye JP (2006) P2X7 and phospholipid signalling: the search of the "missing link" in epithelial cells. Cell Signal 18(12):2098–2104PubMedGoogle Scholar
  32. 32.
    Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-gamma in the human THP-1 monocytic cell line. J Immunol 157(12):5627–5637PubMedGoogle Scholar
  33. 33.
    Sun SH, Lin LB, Hung AC, Kuo JS (1999) ATP-stimulated Ca2+ influx and phospholipase D activities of a rat brain-derived type-2 astrocyte cell line, RBA-2, are mediated through P2X7 receptors. J Neurochem 73(1):334–343PubMedGoogle Scholar
  34. 34.
    Kusner DJ, Adams J (2000) ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164(1):379–388PubMedGoogle Scholar
  35. 35.
    Hung AC, Sun SH (2002) The P2X(7) receptor-mediated phospholipase D activation is regulated by both PKC-dependent and PKC-independent pathways in a rat brain-derived Type-2 astrocyte cell line, RBA-2. Cell Signal 14(1):83–92PubMedGoogle Scholar
  36. 36.
    Perez-Andres E, Fernandez-Rodriguez M, Gonzalez M, Zubiaga A, Vallejo A, Garcia I, Matute C, Pochet S, Dehaye JP, Trueba M, Marino A, Gomez-Munoz A (2002) Activation of phospholipase D-2 by P2X(7) agonists in rat submandibular gland acini. J Lipid Res 43(8):1244–1255PubMedGoogle Scholar
  37. 37.
    Pochet S, Gomez-Munoz A, Marino A, Dehaye JP (2003) Regulation of phospholipase D by P2X7 receptors in submandibular ductal cells. Cell Signal 15(10):927–935PubMedGoogle Scholar
  38. 38.
    el-Moatassim C, Dubyak GR (1992) A novel pathway for the activation of phospholipase D by P2z purinergic receptors in BAC1. 2F5 macrophages. J Biol Chem 267(33):23664–23673PubMedGoogle Scholar
  39. 39.
    el-Moatassim C, Dubyak GR (1993) Dissociation of the pore-forming and phospholipase D activities stimulated via P2z purinergic receptors in BAC1.2F5 macrophages. Product inhibition of phospholipase D enzyme activity. J Biol Chem 268(21):15571–15578PubMedGoogle Scholar
  40. 40.
    Ballerini P, Ciccarelli R, Caciagli F, Rathbone MP, Werstiuk ES, Traversa U, Buccella S, Giuliani P, Jang S, Nargi E, Visini D, Santavenere C, Di Iorio P (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18(3):417–430PubMedGoogle Scholar
  41. 41.
    Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ (2008) P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. J Cell Biol 181(5):859–871PubMedGoogle Scholar
  42. 42.
    Rappold PM, Lynd-Balta E, Joseph SA (2006) P2X7 receptor immunoreactive profile confined to resting and activated microglia in the epileptic brain. Brain Res 1089(1):171–178PubMedGoogle Scholar
  43. 43.
    Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12PubMedGoogle Scholar
  44. 44.
    Costa-Junior HM, Mendes AN, Davis GH, da Cruz CM, Ventura AL, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio Rda C, Persechini PM (2009) ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 88(1–2):51–61PubMedGoogle Scholar
  45. 45.
    Raymond MN, Le Stunff H (2006) Involvement of de novo ceramide biosynthesis in macrophage death induced by activation of ATP-sensitive P2X7 receptor. FEBS Lett 580(1):131–136PubMedGoogle Scholar
  46. 46.
    Lepine S, Le Stunff H, Lakatos B, Sulpice JC, Giraud F (2006) ATP-induced apoptosis of thymocytes is mediated by activation of P2 X 7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim Biophys Acta 1761(1):73–82PubMedGoogle Scholar
  47. 47.
    Suadicani SO, Iglesias R, Spray DC, Scemes E (2009) Point mutation in the mouse P2X7 receptor affects intercellular calcium waves in astrocytes. ASN Neuro 1(1)Google Scholar
  48. 48.
    Le Stunff H, Auger R, Kanellopoulos J, Raymond MN (2004) The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 279(17):16918–16926PubMedGoogle Scholar
  49. 49.
    Costa-Junior HM, Sarmento Vieira F, Coutinho-Silva R (2011) C terminus of the P2X7 receptor: treasure hunting. Purinergic Signal 7(1):7–19PubMedGoogle Scholar
  50. 50.
    Coutinho-Silva R, Stahl L, Raymond MN, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19(3):403–412PubMedGoogle Scholar
  51. 51.
    Coutinho-Silva R, Correa G, Sater AA, Ojcius DM (2009) The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 5(2):197–204PubMedGoogle Scholar
  52. 52.
    Nord EP (1996) Signalling pathways activated by endothelin stimulation of renal cells. Clin Exp Pharmacol Physiol 23(4):331–336PubMedGoogle Scholar
  53. 53.
    Carrington M, Carnall N, Crow MS, Gaud A, Redpath MB, Wasunna CL, Webb H (1998) The properties and function of the glycosylphosphatidylinositol-phospholipase C in Trypanosoma brucei. Mol Biochem Parasitol 91(1):153–164PubMedGoogle Scholar
  54. 54.
    Sokolova E, Grishin S, Shakirzyanova A, Talantova M, Giniatullin R (2003) Distinct receptors and different transduction mechanisms for ATP and adenosine at the frog motor nerve endings. Eur J Neurosci 18(5):1254–1264PubMedGoogle Scholar
  55. 55.
    Tenneti L, Gibbons SJ, Talamo BR (1998) Expression and trans-synaptic regulation of P2x4 and P2z receptors for extracellular ATP in parotid acinar cells. Effects of parasympathetic denervation. J Biol Chem 273(41):26799–26808PubMedGoogle Scholar
  56. 56.
    Metioui M, Amsallem H, Alzola E, Chaib N, Elyamani A, Moran A, Marino A, Dehaye JP (1996) Low affinity purinergic receptor modulates the response of rat submandibular glands to carbachol and substance P. J Cell Physiol 168(2):462–475PubMedGoogle Scholar
  57. 57.
    Takenouchi T, Ogihara K, Sato M, Kitani H (2005) Inhibitory effects of U73122 and U73343 on Ca2+ influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line. Biochim Biophys Acta 1726(2):177–186PubMedGoogle Scholar
  58. 58.
    Zambrzycka A (2004) Aging decreases phosphatidylinositol-4,5-bisphosphate level but has no effect on activities of phosphoinositide kinases. Pol J Pharmacol 56(5):651–654PubMedGoogle Scholar
  59. 59.
    Zhao Q, Yang M, Ting AT, Logothetis DE (2007) PIP(2) regulates the ionic current of P2X receptors and P2X(7) receptor-mediated cell death. Channels (Austin) 1(1):46–55Google Scholar
  60. 60.
    Chaib N, Kabre E, Alzola E, Pochet S, Dehaye JP (2000) Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists. Br J Pharmacol 129(4):703–708PubMedGoogle Scholar
  61. 61.
    Kahlenberg JM, Dubyak GR (2004) Mechanisms of caspase-1 activation by P2X7 receptor-mediated K+ release. Am J Physiol Cell Physiol 286(5):C1100–C1108PubMedGoogle Scholar
  62. 62.
    Haeggstrom JZ, Rinaldo-Matthis A, Wheelock CE, Wetterholm A (2010) Advances in eicosanoid research, novel therapeutic implications. Biochem Biophys Res Commun 396(1):135–139PubMedGoogle Scholar
  63. 63.
    Konkel A, Schunck WH (2011) Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochim Biophys Acta 1814(1):210–222PubMedGoogle Scholar
  64. 64.
    Gaddi A, Cicero AF, Pedro EJ (2004) Clinical perspectives of anti-inflammatory therapy in the elderly: the lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch Gerontol Geriatr 38(3):201–212PubMedGoogle Scholar
  65. 65.
    Jiang H, Zhu AG, Mamczur M, Falck JR, Lerea KM, McGiff JC (2007) Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids. Br J Pharmacol 151(7):1033–1040PubMedGoogle Scholar
  66. 66.
    Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268PubMedGoogle Scholar
  67. 67.
    Adibhatla RM, Dempsy R, Hatcher JF (2008) Integration of cytokine biology and lipid metabolism in stroke. Front Biosci 13:1250–1270PubMedGoogle Scholar
  68. 68.
    Johns DG, Webb RC (1998) TNF-alpha-induced endothelium-independent vasodilation: a role for phospholipase A2-dependent ceramide signaling. Am J Physiol 275(5 Pt 2):H1592–H1598PubMedGoogle Scholar
  69. 69.
    Subbaramaiah K, Chung WJ, Dannenberg AJ (1998) Ceramide regulates the transcription of cyclooxygenase-2. Evidence for involvement of extracellular signal-regulated kinase/c-Jun N-terminal kinase and p38 mitogen-activated protein kinase pathways. J Biol Chem 273(49):32943–32949PubMedGoogle Scholar
  70. 70.
    Newton DA, Acierno PM, Metts MC, Baron PL, Brescia FJ, Gattoni-Celli S (2001) Semiallogeneic cancer vaccines formulated with granulocyte-macrophage colony-stimulating factor for patients with metastatic gastrointestinal adenocarcinomas: a pilot phase I study. J Immunother 24(1):19–26PubMedGoogle Scholar
  71. 71.
    Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404PubMedGoogle Scholar
  72. 72.
    Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7(3):433–444PubMedGoogle Scholar
  73. 73.
    Coutinho-Silva R, Perfettini JL, Persechini PM, Dautry-Varsat A, Ojcius DM (2001) Modulation of P2Z/P2X(7) receptor activity in macrophages infected with Chlamydia psittaci. Am J Physiol Cell Physiol 280(1):C81–C89PubMedGoogle Scholar
  74. 74.
    Hewinson J, Mackenzie AB (2007) P2X(7) receptor-mediated reactive oxygen and nitrogen species formation: from receptor to generators. Biochem Soc Trans 35(Pt 5):1168–1170PubMedGoogle Scholar
  75. 75.
    Ferrari D, Los M, Bauer MK, Vandenabeele P, Wesselborg S, Schulze-Osthoff K (1999) P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Lett 447(1):71–75PubMedGoogle Scholar
  76. 76.
    Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M (2006) P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177(5):2842–2850PubMedGoogle Scholar
  77. 77.
    Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) ATP4- permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262(18):8884–8888PubMedGoogle Scholar
  78. 78.
    Kusner DJ, Barton JA (2001) ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol 167(6):3308–3315PubMedGoogle Scholar
  79. 79.
    Balboa MA, Balsinde J, Johnson CA, Dennis EA (1999) Regulation of arachidonic acid mobilization in lipopolysaccharide-activated P388D(1) macrophages by adenosine triphosphate. J Biol Chem 274(51):36764–36768PubMedGoogle Scholar
  80. 80.
    Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: implications for inflammatory processes. Proc Natl Acad Sci USA 101(26):9745–9750PubMedGoogle Scholar
  81. 81.
    Gargett CE, Cornish EJ, Wiley JS (1996) Phospholipase D activation by P2Z-purinoceptor agonists in human lymphocytes is dependent on bivalent cation influx. Biochem J 313(Pt 2):529–535PubMedGoogle Scholar
  82. 82.
    Shemon AN, Sluyter R, Wiley JS (2007) Rottlerin inhibits P2X(7) receptor-stimulated phospholipase D activity in chronic lymphocytic leukaemia B-lymphocytes. Immunol Cell Biol 85(1):68–72PubMedGoogle Scholar
  83. 83.
    Mathias S, Kolesnick R (1993) Ceramide: a novel second messenger. Adv Lipid Res 25:65–90PubMedGoogle Scholar
  84. 84.
    Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746(3):284–294PubMedGoogle Scholar
  85. 85.
    Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378(Pt 2):281–292PubMedGoogle Scholar
  86. 86.
    Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667PubMedGoogle Scholar
  87. 87.
    Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102(7):391–407PubMedGoogle Scholar
  88. 88.
    Gonnord P, Delarasse C, Auger R, Benihoud K, Prigent M, Cuif MH, Lamaze C, Kanellopoulos JM (2009) Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 23(3):795–805PubMedGoogle Scholar
  89. 89.
    Bannas P, Adriouch S, Kahl S, Braasch F, Haag F, Koch-Nolte F (2005) Activity and specificity of toxin-related mouse T cell ecto-ADP-ribosyltransferase ART2.2 depends on its association with lipid rafts. Blood 105(9):3663–3670PubMedGoogle Scholar
  90. 90.
    Tsukimoto M, Tokunaga A, Harada H, Kojima S (2009) Blockade of murine T cell activation by antagonists of P2Y6 and P2X7 receptors. Biochem Biophys Res Commun 384(4):512–518PubMedGoogle Scholar
  91. 91.
    Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23(6):1685–1693PubMedGoogle Scholar
  92. 92.
    Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4(162):ra12PubMedGoogle Scholar
  93. 93.
    Zhang S, Kim CC, Batra S, McKerrow JH, Loke P (2010) Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines. PLoS Negl Trop Dis 4(3):e648PubMedGoogle Scholar
  94. 94.
    McDermott JE, Archuleta M, Thrall BD, Adkins JN, Waters KM (2011) Controlling the response: predictive modeling of a highly central, pathogen-targeted core response module in macrophage activation. PLoS One 6(2):e14673PubMedGoogle Scholar
  95. 95.
    Sun WC, Moore JN, Hurley DJ, Vandenplas ML, Fortes B, Thompson R, Linden J (2010) Differential modulation of lipopolysaccharide-induced expression of inflammatory genes in equine monocytes through activation of adenosine A2A receptors. Vet Immunol Immunopathol 134(3–4):169–177PubMedGoogle Scholar
  96. 96.
    De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC (1995) Genetic and redox determinants of nitric oxide cytotoxicity in a Salmonella typhimurium model. Proc Natl Acad Sci USA 92(14):6399–6403PubMedGoogle Scholar
  97. 97.
    Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112(4):935–945PubMedGoogle Scholar
  98. 98.
    Huynh KK, Grinstein S (2007) Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71(3):452–462PubMedGoogle Scholar
  99. 99.
    Donne E, Pasmans F, Boyen F, Van Immerseel F, Adriaensen C, Hernalsteens JP, Ducatelle R, Haesebrouck F (2005) Survival of Salmonella serovar Typhimurium inside porcine monocytes is associated with complement binding and suppression of the production of reactive oxygen species. Vet Microbiol 107(3–4):205–214PubMedGoogle Scholar
  100. 100.
    Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7(5):355–366PubMedGoogle Scholar
  101. 101.
    Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4):767–782PubMedGoogle Scholar
  102. 102.
    Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(11):1041–1047PubMedGoogle Scholar
  103. 103.
    Desjardins M, Descoteaux A (1998) Survival strategies of Leishmania donovani in mammalian host macrophages. Res Immunol 149(7–8):689–692PubMedGoogle Scholar
  104. 104.
    Ankel H, Mittnacht S, Jacobsen H (1985) Antiviral activity of prostaglandin A on encephalomyocarditis virus-infected cells: a unique effect unrelated to interferon. J Gen Virol 66(Pt 11):2355–2364PubMedGoogle Scholar
  105. 105.
    Conti C, De Marco A, Mastromarino P, Tomao P, Santoro MG (1999) Antiviral effect of hyperthermic treatment in rhinovirus infection. Antimicrob Agents Chemother 43(4):822–829PubMedGoogle Scholar
  106. 106.
    Taylor JM, Han Z (2010) Purinergic receptor functionality is necessary for infection of human hepatocytes by hepatitis delta virus and hepatitis B virus. PLoS One 5(12):e15784PubMedGoogle Scholar
  107. 107.
    Sandberg M, Carlsson F, Nilsson B, Korsgren O, Carlsson PO, Jansson L (2011) Syngeneic islet transplantations into the submandibular gland of mice. Transplantation 91(2):e17–e19PubMedGoogle Scholar
  108. 108.
    Yang Y, Wu J, Lu Y (2010) Mechanism of HIV-1-TAT induction of interleukin-1beta from human monocytes: Involvement of the phospholipase C/protein kinase C signaling cascade. J Med Virol 82(5):735–746PubMedGoogle Scholar
  109. 109.
    Sherrill JD, Stropes MP, Schneider OD, Koch DE, Bittencourt FM, Miller JL, Miller WE (2009) Activation of intracellular signaling pathways by the murine cytomegalovirus G protein-coupled receptor M33 occurs via PLC-{beta}/PKC-dependent and -independent mechanisms. J Virol 83(16):8141–8152PubMedGoogle Scholar
  110. 110.
    Qu XW, Liu WP, Qi ZY, Duan ZJ, Zheng LS, Kuang ZZ, Zhang WJ, Hou YD (2008) Phospholipase A2-like activity of human bocavirus VP1 unique region. Biochem Biophys Res Commun 365(1):158–163PubMedGoogle Scholar
  111. 111.
    Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB, Wiley JS, Britton WJ (2007) A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med 175(4):360–366PubMedGoogle Scholar
  112. 112.
    Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA (2001) ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion. J Immunol 167(6):3300–3307PubMedGoogle Scholar
  113. 113.
    Darville T, Welter-Stahl L, Cruz C, Sater AA, Andrews CW Jr, Ojcius DM (2007) Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice. J Immunol 179(6):3707–3714PubMedGoogle Scholar
  114. 114.
    Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35PubMedGoogle Scholar
  115. 115.
    Correa G, Marques da Silva C, de Abreu Moreira-Souza AC, Vommaro RC, Coutinho-Silva R (2010) Activation of the P2X(7) receptor triggers the elimination of Toxoplasma gondii tachyzoites from infected macrophages. Microbes Infect 12(6):497–504PubMedGoogle Scholar
  116. 116.
    Chaves SP, Torres-Santos EC, Marques C, Figliuolo VR, Persechini PM, Coutinho-Silva R, Rossi-Bergmann B (2009) Modulation of P2X(7) purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes Infect 11(10–11):842–849PubMedGoogle Scholar
  117. 117.
    Mosior M, Six DA, Dennis EA (1998) Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J Biol Chem 273(4):2184–2191PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Helio Miranda Costa-Junior
    • 1
    • 2
  • Camila Marques-da-Silva
    • 1
  • Flávia Sarmento Vieira
    • 1
  • Leonardo Campos Monção-Ribeiro
    • 1
  • Robson Coutinho-Silva
    • 1
  1. 1.Laboratório de ImunofisiologiaUniversidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho-UFRJRio de JaneiroBrazil
  2. 2.Universidade Gama Filho, Ciências BiomédicasRio de JaneiroBrazil

Personalised recommendations