Purinergic Signalling

, Volume 8, Issue 1, pp 39–48 | Cite as

Extracellular ATP reduces tumor sphere growth and cancer stem cell population in glioblastoma cells

  • Pítia Flores Ledur
  • Emilly Schlee Villodre
  • Romela Paulus
  • Lavinia Almeida Cruz
  • Débora Gazzana Flores
  • Guido Lenz
Original Article


Glioblastoma is the most aggressive tumor in the CNS and is characterized by having a cancer stem cell (CSC) subpopulation essential for tumor survival. The purinergic system plays an important role in glioma growth, since adenosine triphosphate (ATP) can induce proliferation of glioma cells, and alteration in extracellular ATP degradation by the use of exogenous nucleotidases dramatically alters the size of gliomas in rats. The aim of this work was to characterize the effect of the purinergic system on glioma CSCs. Human U87 glioma cultures presented tumor spheres that express the markers of glioma cancer stem cells CD133, Oct-4, and Nanog. Messenger RNA of several purinergic receptors were differently expressed in spheres when compared to a cell monolayer not containing spheres. Treatment of human gliomas U87 or U343 as well as rat C6 gliomas with 100 μM of ATP reduced the number of tumor spheres when grown in neural stem cell medium supplemented with epidermal growth factor and basic fibroblast growth factor. Moreover, ATP caused a decline in the number of spheres observed in culture in a dose-dependent manner. ATP also reduces the expression of Nanog, as determined by flow cytometry, as well as CD133 and Oct-4, as analyzed by flow cytometry and RT-PCR in U87 cells. The differential expression of purinergic receptor in tumor spheres when compared to adherent cells and the effect of ATP in reducing tumor spheres suggest that the purinergic system affects CSC biology and that ATP may be a potential agonist for differentiation therapy.


Glioma Cancer stem cells CD133 Purinergic system ATP 



Cancer stem cell




Glutamate–aspartate transporter


Calcium-calmodulin-dependent kinase II




Fibroblast growth factor


Epidermal growth factor



The present research was supported by grants from Brazilian funding agencies FAPERGS (Procoredes III 06/1376.0 and Pronex 10/0044-3) and CNPq (420036/2005-9). PL, ESV, DGF. and GL are recipient of CNPq fellowships.

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

11302_2011_9252_MOESM1_ESM.pdf (981 kb)
Supplementary Figure 1 Presence of CD133 marker in spheres versus monolayer and in control versus ATP treatments. Spheres and monolayer cells were stained with anti-CD133 antibody and analyzed by flow cytometry (a). CD133 analysis by flow cytometry of cells grown for 7 days in the presence or absence of ATP in soft agar plates (spheres) or adherent plates in the same conditions as used in the sphere formation assay with FBS medium (representative of three independent experiments) (b, c) (PDF 980kb)
11302_2011_9252_MOESM2_ESM.pdf (2.2 mb)
Supplementary Figure 2 Titration of ATP effect on sphere formation. Proportion of spheres formed in control and in ATP treatment at concentrations of 1, 10, and 100 μM, in U87 and U343 cells grown on NSC medium (a). Bars represent SEM (n = 4). t test values: *p < 0.05 and **p < 0.001. Representative figures of U87 cells treated with the indicated concentrations of ATP for 7 days (b). Bar size = 100 μm (PDF 2242kb)
11302_2011_9252_MOESM3_ESM.doc (48 kb)
Supplementary Table 1 Primers used in RT-PCR and annealing temperature (T) (DOC 48 kb)
11302_2011_9252_MOESM4_ESM.doc (38 kb)
Supplementary Table 2 mRNA expression of purinergic receptors in different gliomas (DOC 38 kb)


  1. 1.
    Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70(2):217–228. doi: 10.1007/s11060-004-2751-6 PubMedCrossRefGoogle Scholar
  2. 2.
    Flores DG, Ledur PF, Abujamra AL, Brunetto AL, Schwartsmann G, Lenz G, Roesler R (2009) Cancer stem cells and the biology of brain tumors. Curr Stem Cell Res Ther 4(4):306–313PubMedCrossRefGoogle Scholar
  3. 3.
    Lenz G (2010) Transient oncogenes. Med Hypotheses 75(6):660–662. doi: 10.1016/j.mehy.2010.08.012 PubMedCrossRefGoogle Scholar
  4. 4.
    Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359PubMedCrossRefGoogle Scholar
  5. 5.
    Diamandis P, Wildenhain J, Clarke ID, Sacher AG, Graham J, Bellows DS, Ling EK, Ward RJ, Jamieson LG, Tyers M, Dirks PB (2007) Chemical genetics reveals a complex functional ground state of neural stem cells. Nat Chem Biol 3(5):268–273PubMedCrossRefGoogle Scholar
  6. 6.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783PubMedCrossRefGoogle Scholar
  7. 7.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRefGoogle Scholar
  8. 8.
    Yu SC, Ping YF, Yi L, Zhou ZH, Chen JH, Yao XH, Gao L, Wang JM, Bian XW (2008) Isolation and characterization of cancer stem cells from a human glioblastoma cell line u87. Cancer Lett 265(1):124–134PubMedCrossRefGoogle Scholar
  9. 9.
    Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB, Liu W, Qi Q, Lu N, Tao L, Wang XT, You QD, Guo QL (2009) Isolation and characterization of cancer stem like cells in human glioblastoma cell lines. Cancer Lett 279(1):13–21PubMedCrossRefGoogle Scholar
  10. 10.
    Beier D, Rohrl S, Pillai DR, Schwarz S, Kunz-Schughart LA, Leukel P, Proescholdt M, Brawanski A, Bogdahn U, Trampe-Kieslich A, Giebel B, Wischhusen J, Reifenberger G, Hau P, Beier CP (2008) Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 68(14):5706–5715PubMedCrossRefGoogle Scholar
  11. 11.
    Morrone FB, Jacques-Silva MC, Horn AP, Bernardi A, Schwartsmann G, Rodnight R, Lenz G (2003) Extracellular nucleotides and nucleosides induce proliferation and increase nucleoside transport in human glioma cell lines. J Neurooncol 64(3):211–218PubMedCrossRefGoogle Scholar
  12. 12.
    Wei W, Ryu JK, Choi HB, McLarnon JG (2008) Expression and function of the p2x(7) receptor in rat c6 glioma cells. Cancer Lett 260(1–2):79–87PubMedCrossRefGoogle Scholar
  13. 13.
    Morrone FB, Horn AP, Stella J, Spiller F, Sarkis JJ, Salbego CG, Lenz G, Battastini AM (2005) Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71(2):135–140PubMedCrossRefGoogle Scholar
  14. 14.
    Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MI, Lenz G, Battastini AM (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6:226PubMedCrossRefGoogle Scholar
  15. 15.
    Braganhol E, Morrone FB, Bernardi A, Huppes D, Meurer L, Edelweiss MI, Lenz G, Wink MR, Robson SC, Battastini AM (2009) Selective NTPDase2 expression modulates in vivo rat glioma growth. Cancer Sci 100(8):1434–1442PubMedCrossRefGoogle Scholar
  16. 16.
    Resende RR, Majumder P, Gomes KN, Britto LR, Ulrich H (2007) P19 embryonal carcinoma cells as in vitro model for studying purinergic receptor expression and modulation of N-methyl-d-aspartate-glutamate and acetylcholine receptors during neuronal differentiation. Neuroscience 146(3):1169–1181PubMedCrossRefGoogle Scholar
  17. 17.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  18. 18.
    Tamajusuku AS, Villodre ES, Paulus R, Coutinho-Silva R, Battasstini AM, Wink MR, Lenz G (2010) Characterization of ATP-induced cell death in the GL261 mouse glioma. J Cell Biochem 109(5):983–991PubMedCrossRefGoogle Scholar
  19. 19.
    Du Z, Jia D, Liu S, Wang F, Li G, Zhang Y, Cao X, Ling EA, Hao A (2009) Oct4 is expressed in human gliomas and promotes colony formation in glioma cells. Glia 57(7):724–733PubMedCrossRefGoogle Scholar
  20. 20.
    Wink MR, Lenz G, Braganhol E, Tamajusuku AS, Schwartsmann G, Sarkis JJ, Battastini AM (2003) Altered extracellular ATP, ADP and AMP catabolism in glioma cell lines. Cancer Lett 198(2):211–218PubMedCrossRefGoogle Scholar
  21. 21.
    Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58(1):58–86PubMedCrossRefGoogle Scholar
  22. 22.
    Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101(3):781–786PubMedCrossRefGoogle Scholar
  23. 23.
    Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng X, Wen L, Yang X (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim 44(7):280–289PubMedCrossRefGoogle Scholar
  24. 24.
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848PubMedCrossRefGoogle Scholar
  25. 25.
    Annabi B, Laflamme C, Sina A, Lachambre MP, Beliveau R (2009) A MT1-MMP/NF-kappaB signaling axis as a checkpoint controller of Cox-2 expression in CD133+ U87 glioblastoma cells. J Neuroinflammation 6:8PubMedCrossRefGoogle Scholar
  26. 26.
    Saidi A, Hagedorn M, Allain N, Verpelli C, Sala C, Bello L, Bikfalvi A, Javerzat S (2009) Combined targeting of interleukin-6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer 125(5):1054–1064PubMedCrossRefGoogle Scholar
  27. 27.
    Ouafik L, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F, Vuaroqueaux V, Dussert C, Palmari J, Dufour H, Grisoli F, Casellas P, Brunner N, Martin PM (2002) Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol 160(4):1279–1292PubMedCrossRefGoogle Scholar
  28. 28.
    Lenz G, Goncalves D, Luo Z, Avruch J, Rodnight R, Neary JT (2001) Extracellular ATP stimulates an inhibitory pathway towards growth factor-induced cRaf-1 and MEKK activation in astrocyte cultures. J Neurochem 77(4):1001–1009PubMedCrossRefGoogle Scholar
  29. 29.
    Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3(7):e2599PubMedCrossRefGoogle Scholar
  30. 30.
    Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial–mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444PubMedCrossRefGoogle Scholar
  31. 31.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz I, Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Pítia Flores Ledur
    • 1
  • Emilly Schlee Villodre
    • 1
  • Romela Paulus
    • 1
  • Lavinia Almeida Cruz
    • 1
  • Débora Gazzana Flores
    • 2
  • Guido Lenz
    • 1
    • 3
  1. 1.Biophysics Department, IBFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Cancer Research LaboratoryFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Center of BiotechnologyFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations