Purinergic Signalling

, Volume 7, Issue 4, pp 469–488 | Cite as

Regional expression of P2Y4 receptors in the rat central nervous system

  • Xianmin Song
  • Wei Guo
  • Qiang Yu
  • Xiaofeng Liu
  • Zhenghua Xiang
  • Cheng He
  • Geoffrey Burnstock
Original Article

Abstract

P2Y receptors are G protein-coupled receptors composed of eight known subunits (P2Y1, 2, 4, 6, 11, 12, 13, 14), which are involved in different functions in neural tissue. The present study investigates the expression pattern of P2Y4 receptors in the rat central nervous system (CNS) using immunohistochemistry and in situ hybridization. The specificity of the immunostaining has been verified by preabsorption, Western blot, and combined use of immunohistochemistry and in situ hybridization. Neurons expressing P2Y4 receptors were distributed widely in the rat CNS. Heavy P2Y4 receptor immunostaining was observed in the magnocellular neuroendocrine neurons of the hypothalamus, red nucleus, pontine nuclei, mesencephalic trigeminal nucleus, motor trigeminal nucleus, ambiguous nucleus, inferior olive, hypoglossal nucleus, and dorsal motor vagus nucleus. Both neurons and astrocytes express P2Y4 receptors. P2Y4 receptor immunostaining signals were mainly confined to cell bodies and dendrites of neurons, suggesting that P2Y4 receptors are mainly involved in regulating postsynaptic events. In the hypothalamus, all the vasopressin (VP) and oxytocin (OT) neurons and all the orexin A neurons were immunoreactive for P2Y4 receptors. All the neurons expressing P2Y4 receptors were found to express N-methyl-d-aspartate receptor 1 (NR1). These data suggest that purines and pyrimidines might be involved in regulation of the release of the neuropeptides VP, OT, and orexin in the rat hypothalamus via P2Y4 receptors. Further, the physiological and pathophysiological functions of the neurons may operate through coupling between P2Y4 receptors and NR1.

Keywords

P2Y4 receptor Immunohistochemistry In situ hybridization CNS 

References

  1. 1.
    Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492PubMedGoogle Scholar
  2. 2.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797PubMedCrossRefGoogle Scholar
  3. 3.
    Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology. Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341PubMedCrossRefGoogle Scholar
  4. 4.
    Hussl S, Boehm (2006) Functions of neuronal P2Y receptors. Pflugers Arch 452:538–551PubMedCrossRefGoogle Scholar
  5. 5.
    Bogdanov YD, Wildman SS, Clements MP, King BF, Burnstock G (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124:428–430PubMedCrossRefGoogle Scholar
  6. 6.
    Moore D, Chambers J, Waldvogel H, Faull R, Emson P (2000) Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. J Comp Neurol 421:374–384PubMedCrossRefGoogle Scholar
  7. 7.
    Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409:202–207PubMedCrossRefGoogle Scholar
  8. 8.
    Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM (2001) Identification of a novel human ADP receptor coupled to G(i). J Biol Chem 276:41479–41485PubMedCrossRefGoogle Scholar
  9. 9.
    Amadio S, D’Ambrosi N, Cavaliere F, Murra B, Sancesario G, Bernardi G, Burnstock G, Volonte C (2002) P2 receptor modulation and cytotoxic function in cultured CNS neurons. Neuropharmacology 42:489–501PubMedCrossRefGoogle Scholar
  10. 10.
    Hervas C, Perez-Sen R, Miras-Portugal MT (2003) Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 73:384–399PubMedCrossRefGoogle Scholar
  11. 11.
    Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604PubMedCrossRefGoogle Scholar
  12. 12.
    Communi D, Pirotton S, Parmentier M, Boeynaems JM (1995) Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem 270:30849–30852PubMedCrossRefGoogle Scholar
  13. 13.
    Nguyen T, Erb L, Weisman GA, Marchese A, Heng HH, Garrad RC, George SR, Turner JT, O’Dowd BF (1995) Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem 270:30845–30848PubMedCrossRefGoogle Scholar
  14. 14.
    Webb TE, Henderson DJ, Roberts JA, Barnard EA (1998) Molecular cloning and characterization of the rat P2Y4 receptor. J Neurochem 71:1348–1357PubMedCrossRefGoogle Scholar
  15. 15.
    Lazarowski ER, Rochelle LG, O’Neal WK, Ribeiro CM, Grubb BR, Zhang V, Harden TK, Boucher RC (2001) Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther 297:43–49PubMedGoogle Scholar
  16. 16.
    Suarez-Huerta N, Pouillon V, Boeynaems J, Robaye B (2001) Molecular cloning and characterization of the mouse P2Y4 nucleotide receptor. Eur J Pharmacol 416:197–202PubMedCrossRefGoogle Scholar
  17. 17.
    Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119PubMedGoogle Scholar
  18. 18.
    Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A, Buell G (1996) Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507PubMedGoogle Scholar
  19. 19.
    Teramoto N, Szekely L, Pokrovskaja K, Hu LF, Yoshino T, Akagi T, Klein G (1998) Simultaneous detection of two independent antigens by double staining with two mouse monoclonal antibodies. J Virol Methods 73:89–97PubMedCrossRefGoogle Scholar
  20. 20.
    Xiang Z, He C, Burnstock G (2006) P2X5 receptors are expressed on neurons containing arginine vasopressin and nitric oxide synthase in the rat hypothalamus. Brain Res 1099:56–63PubMedCrossRefGoogle Scholar
  21. 21.
    Xiang Z, Jiang L, Kang Z (2001) Transient expression of somatostatin mRNA in developing ganglion cell layers of rat retina. Brain Res Dev Brain Res 128:25–33PubMedCrossRefGoogle Scholar
  22. 22.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  23. 23.
    Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262PubMedGoogle Scholar
  24. 24.
    Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K (2006) Neurons and glial cells differentially express P2Y receptor mRNAs in the rat dorsal root ganglion and spinal cord. J Comp Neurol 498:443–454PubMedCrossRefGoogle Scholar
  25. 25.
    Marcus DC, Liu J, Lee JH, Scherer EQ, Scofield MA, Wangemann P (2005) Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun Signal 3:13PubMedCrossRefGoogle Scholar
  26. 26.
    Ghanem E, Robaye B, Leal T, Leipziger J, Van Driessche W, Beauwens R, Boeynaems JM (2005) The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 146:364–369PubMedCrossRefGoogle Scholar
  27. 27.
    Kim CH, Kim HY, Lee HS, Chang SO, Oh SH, Lee JH (2010) P2Y4-mediated regulation of Na+ absorption in the Reissner’s membrane of the cochlea. J Neurosci 30:3762–3769PubMedCrossRefGoogle Scholar
  28. 28.
    Matos JE, Robaye B, Boeynaems JM, Beauwens R, Leipziger J (2005) K+ secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J Physiol 564:269–279PubMedCrossRefGoogle Scholar
  29. 29.
    Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, Boeynaems JM, Beauwens R (2003) Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol 63:777–783PubMedCrossRefGoogle Scholar
  30. 30.
    Hiruma H, Bourque CW (1995) P2 purinoceptor-mediated depolarization of rat supraoptic neurosecretory cells in vitro. J Physiol 489(Pt 3):805–811PubMedGoogle Scholar
  31. 31.
    Shibuya I, Tanaka K, Hattori Y, Uezono Y, Harayama N, Noguchi J, Ueta Y, Izumi F, Yamashita H (1999) Evidence that multiple P2X purinoceptors are functionally expressed in rat supraoptic neurones. J Physiol 514(Pt 2):351–367PubMedCrossRefGoogle Scholar
  32. 32.
    Sperlagh B, Mergl Z, Juranyi Z, Vizi ES, Makara GB (1999) Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol 160:343–350PubMedCrossRefGoogle Scholar
  33. 33.
    Chen ZP, Levy A, Lightman SL (1994) Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons. Brain Res 641:249–256PubMedCrossRefGoogle Scholar
  34. 34.
    Mori M, Tsushima H, Matsuda T (1992) Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats. Neuropharmacology 31:585–592PubMedCrossRefGoogle Scholar
  35. 35.
    Kidd EJ, Grahames CB, Simon J, Michel AD, Barnard EA, Humphrey PP (1995) Localization of P2X purinoceptor transcripts in the rat nervous system. Mol Pharmacol 48:569–573PubMedGoogle Scholar
  36. 36.
    Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Hollmann M, Karschin C, Stuhmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci USA 93:3684–3688PubMedCrossRefGoogle Scholar
  37. 37.
    Xiang Z, Bo X, Oglesby I, Ford A, Burnstock G (1998) Localization of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus. Brain Res 813:390–397PubMedCrossRefGoogle Scholar
  38. 38.
    Guo W, Sun J, Xu X, Bunstock G, He C, Xiang Z (2009) P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol 131:29–41PubMedCrossRefGoogle Scholar
  39. 39.
    Day TA, Sibbald JR, Khanna S (1993) ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res 607:341–344PubMedCrossRefGoogle Scholar
  40. 40.
    Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20:8868–8875PubMedGoogle Scholar
  41. 41.
    Song Z, Vijayaraghavan S, Sladek CD (2007) ATP increases intracellular calcium in supraoptic neurons by activation of both P2X and P2Y purinergic receptors. Am J Physiol Regul Integr Comp Physiol 292:R423–R431PubMedCrossRefGoogle Scholar
  42. 42.
    Staines WA, Daddona PE, Nagy JI (1987) The organization and hypothalamic projections of the tuberomammillary nucleus in the rat: an immunohistochemical study of adenosine deaminase-positive neurons and fibers. Neuroscience 23:571–596PubMedCrossRefGoogle Scholar
  43. 43.
    Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28:585–610PubMedCrossRefGoogle Scholar
  44. 44.
    Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep–wake control. J Neurosci 22:7695–7711PubMedGoogle Scholar
  45. 45.
    Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130PubMedCrossRefGoogle Scholar
  46. 46.
    Vanni-Mercier G, Gigout S, Debilly G, Lin JS (2003) Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 144:227–241PubMedCrossRefGoogle Scholar
  47. 47.
    Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360PubMedCrossRefGoogle Scholar
  48. 48.
    Vorobjev VS, Sharonova IN, Haas HL, Sergeeva OA (2003) Expression and function of P2X purinoceptors in rat histaminergic neurons. Br J Pharmacol 138:1013–1019PubMedCrossRefGoogle Scholar
  49. 49.
    Sergeeva OA, Klyuch BP, Fleischer W, Eriksson KS, Korotkova TM, Siebler M, Haas HL (2006) P2Y receptor-mediated excitation in the posterior hypothalamus. Eur J Neurosci 24:1413–1426PubMedCrossRefGoogle Scholar
  50. 50.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedCrossRefGoogle Scholar
  51. 51.
    van den Pol AN (2000) Narcolepsy: a neurodegenerative disease of the hypocretin system? Neuron 27:415–418PubMedCrossRefGoogle Scholar
  52. 52.
    Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM, Sinton CM, Sugiyama F, Yagami K, Goto K, Yanagisawa M, Sakurai T (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354PubMedCrossRefGoogle Scholar
  53. 53.
    Florenzano F, Viscomi MT, Mercaldo V, Longone P, Bernardi G, Bagni C, Molinari M, Carrive P (2006) P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J Comp Neurol 498:58–67PubMedCrossRefGoogle Scholar
  54. 54.
    Wollmann G, Acuna-Goycolea C, van den Pol AN (2005) Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J Neurophysiol 94:2195–2206PubMedCrossRefGoogle Scholar
  55. 55.
    Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously-expressed P2Y2 nucleotide receptors of N-type calcium currents in rat sympathetic neurones. Br J Pharmacol 121:849–851PubMedCrossRefGoogle Scholar
  56. 56.
    Wirkner K, Koles L, Thummler S, Luthardt J, Poelchen W, Franke H, Furst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488PubMedCrossRefGoogle Scholar
  57. 57.
    Cavaliere F, Amadio S, Angelini DF, Sancesario G, Bernardi G, Volonte C (2004) Role of the metabotropic P2Y(4) receptor during hypoglycemia: cross talk with the ionotropic NMDAR1 receptor. Exp Cell Res 300:149–158PubMedCrossRefGoogle Scholar
  58. 58.
    Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415PubMedCrossRefGoogle Scholar
  59. 59.
    Phillis JW, O’Regan MH, Perkins LM (1993) Adenosine 5′-triphosphate release from the normoxic and hypoxic in vivo rat cerebral cortex. Neurosci Lett 151:94–96PubMedCrossRefGoogle Scholar
  60. 60.
    Volonte C, Merlo D (1996) Selected P2 purinoceptor modulators prevent glutamate-evoked cytotoxicity in cultured cerebellar granule neurons. J Neurosci Res 45:183–193PubMedCrossRefGoogle Scholar
  61. 61.
    Cavaliere F, D’Ambrosi N, Sancesario G, Bernardi G, Volonte C (2001) Hypoglycaemia-induced cell death: features of neuroprotection by the P2 receptor antagonist basilen blue. Neurochem Int 38:199–207PubMedCrossRefGoogle Scholar
  62. 62.
    Peoples RW, Li C (1998) Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol 124:400–408PubMedCrossRefGoogle Scholar
  63. 63.
    Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) ATP inhibits glutamate synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179PubMedGoogle Scholar
  64. 64.
    Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y(1) receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex. Neurochem Int 42:161–172PubMedCrossRefGoogle Scholar
  65. 65.
    Lee SY, Wolff SC, Nicholas RA, O’Grady SM (2003) P2Y receptors modulate ion channel function through interactions involving the C-terminal domain. Mol Pharmacol 63:878–885PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xianmin Song
    • 1
  • Wei Guo
    • 1
  • Qiang Yu
    • 1
  • Xiaofeng Liu
    • 1
  • Zhenghua Xiang
    • 1
  • Cheng He
    • 1
  • Geoffrey Burnstock
    • 2
  1. 1.Department of Neurobiology, Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Centre of Changzheng HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Autonomic Neuroscience CentreUniversity College Medical School, Royal Free CampusLondonUK

Personalised recommendations