Purinergic Signalling

, Volume 7, Issue 2, pp 231–241 | Cite as

Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer

  • Beat M. Künzli
  • Maria-Isabell Bernlochner
  • Stephan Rath
  • Samuel Käser
  • Eva Csizmadia
  • Keiichi Enjyoji
  • Peter Cowan
  • Anthony d’Apice
  • Karen Dwyer
  • Robert Rosenberg
  • Aurel Perren
  • Helmut Friess
  • Christoph A. Maurer
  • Simon C. Robson
Original Article

Abstract

Despite improvements in prevention and management of colorectal cancer (CRC), uncontrolled tumor growth with metastatic spread to distant organs remains an important clinical concern. Genetic deletion of CD39, the dominant vascular and immune cell ectonucleotidase, has been shown to delay tumor growth and blunt angiogenesis in mouse models of melanoma, lung and colonic malignancy. Here, we tested the influence of CD39 on CRC tumor progression and metastasis by investigating orthotopic transplanted and metastatic cancer models in wild-type BALB/c, human CD39 transgenic and CD39 deficient mice. We also investigated CD39 and P2 receptor expression patterns in human CRC biopsies. Murine CD39 was expressed by endothelium, stromal and mononuclear cells infiltrating the experimental MC-26 tumors. In the primary CRC model, volumes of tumors in the subserosa of the colon and/or rectum did not differ amongst the treatment groups at day 10, albeit these tumors rarely metastasized to the liver. In the dissemination model, MC-26 cell line-derived hepatic metastases grew significantly faster in CD39 over-expressing transgenics, when compared to CD39 deficient mice. Murine P2Y2 was significantly elevated at both mRNA and protein levels, within the larger liver metastases obtained from CD39 transgenic mice where changes in P2X7 levels were also noted. In clinical samples, lower levels of CD39 mRNA in malignant CRC tissues appeared associated with longer duration of survival and could be linked to less invasive tumors. The modulatory effects of CD39 on tumor dissemination and differential levels of CD39, P2Y2 and P2X7 expression in tumors suggest involvement of purinergic signalling in these processes. Our studies also suggest potential roles for purinergic-based therapies in clinical CRC.

Keywords

CD39 NTPDase1 P2 receptors Colorectal cancer MC-26 cancer cell line 

Notes

Acknowledgements

We would like to thank Dr. Kirk Ives and Dr. CM Townsend (UTMB, Galveston, USA) for their support in the present study and for providing our institution with the MC-26 mouse colorectal cancer cell line. Grants—this work was supported by the German Research Foundation Grants (DFG KU 1957/1-1 and DFG KU 1957/3-1 to B.M.K.) and the National Institute of Health (NIH HL63972 and HL076540 to S.C.R).

References

  1. 1.
    Brenner H, Stegmaier C, Ziegler H (2005) Long-term survival of cancer patients in Germany achieved by the beginning of the third millenium. Ann Oncol 16(6):981–986PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi T, Morotomi M, Nomoto K (2004) A novel mouse model of rectal cancer established by orthotopic implantation of colon cancer cells. Cancer Sci 95(6):514–519PubMedCrossRefGoogle Scholar
  3. 3.
    Kramer I, Lipp HP (2007) Bevacizumab, a humanized anti-angiogenic monoclonal antibody for the treatment of colorectal cancer. J Clin Pharm Ther 32(1):1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Bresalier RS, Hujanen ES, Raper SE, Roll FJ, Itzkowitz SH, Martin GR, Kim YS (1987) An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability. Cancer Res 47(5):1398–1406PubMedGoogle Scholar
  5. 5.
    Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ (1988) Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48(23):6863–6871PubMedGoogle Scholar
  6. 6.
    Tsutsumi S, Kuwano H, Morinaga N, Shimura T, Asao T (2001) Animal model of para-aortic lymph node metastasis. Cancer Lett 169(1):77–85PubMedCrossRefGoogle Scholar
  7. 7.
    Daruwalla J, Christophi C (2006) The effect of hyperbaric oxygen therapy on tumour growth in a mouse model of colorectal cancer liver metastases. Eur J Cancer 42(18):3304–3311PubMedCrossRefGoogle Scholar
  8. 8.
    Singh P, Walker JP, Townsend CM Jr, Thompson JC (1986) Role of gastrin and gastrin receptors on the growth of a transplantable mouse colon carcinoma (MC-26) in BALB/c mice. Cancer Res 46(4 Pt 1):1612–1616PubMedGoogle Scholar
  9. 9.
    Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann NY Acad Sci 1131:225–234PubMedCrossRefGoogle Scholar
  10. 10.
    Royston D, Jackson DG (2009) Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol 217(5):608–619PubMedCrossRefGoogle Scholar
  11. 11.
    Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS 2nd, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5(9):1010–1017PubMedCrossRefGoogle Scholar
  12. 12.
    Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15(1):55–62PubMedGoogle Scholar
  13. 13.
    Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304PubMedCrossRefGoogle Scholar
  14. 14.
    Goepfert C, Sundberg C, Sevigny J, Enjyoji K, Hoshi T, Csizmadia E, Robson S (2001) Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104(25):3109–3115PubMedCrossRefGoogle Scholar
  15. 15.
    Kunzli BM, Berberat PO, Giese T, Csizmadia E, Kaczmarek E, Baker C, Halaceli I, Buchler MW, Friess H, Robson SC (2007) Upregulation of CD39/NTPDases and P2 receptors in human pancreatic disease. Am J Physiol Gastrointest Liver Physiol 292(1):G223–230PubMedCrossRefGoogle Scholar
  16. 16.
    Jackson SW, Hoshi T, Wu Y, Sun X, Enjyoji K, Cszimadia E, Sundberg C, Robson SC (2007) Disordered purinergic signalling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am J Pathol 171(4):1395–1404PubMedCrossRefGoogle Scholar
  17. 17.
    Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4(+)Foxp3(+) regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040PubMedCrossRefGoogle Scholar
  18. 18.
    Kunzli BM, Nuhn P, Enjyoji K, Banz Y, Smith RN, Csizmadia E, Schuppan D, Berberat PO, Friess H, Robson SC (2008) Disordered pancreatic inflammatory responses and inhibition of fibrosis in CD39-null mice. Gastroenterology 134(1):292–305PubMedCrossRefGoogle Scholar
  19. 19.
    Hopfner M, Maaser K, Barthel B, von Lampe B, Hanski C, Riecken EO, Zeitz M, Scherubl H (2001) Growth inhibition and apoptosis induced by P2Y2 receptors in human colorectal carcinoma cells: involvement of intracellular calcium and cyclic adenosine monophosphate. Int J Colorectal Dis 16(3):154–166PubMedCrossRefGoogle Scholar
  20. 20.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265PubMedCrossRefGoogle Scholar
  21. 21.
    Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha S, Wang JC, Hyrien O, Burack WR, Mosmann TR, Quataert SA, Bernstein SH (2009) Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol 183:6157–6166PubMedCrossRefGoogle Scholar
  22. 22.
    Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Lenzner DE, Jackson EK, Gorelik E, Lang S, Johnson JT, Whiteside TL (2009) Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin Cancer Res 15(20):6348–6357PubMedCrossRefGoogle Scholar
  23. 23.
    Hopfner M, Lemmer K, Jansen A, Hanski C, Riecken EO, Gavish M, Mann B, Buhr H, Glassmeier G, Scherubl H (1998) Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem Biophys Res Commun 251(3):811–817PubMedCrossRefGoogle Scholar
  24. 24.
    Nylund G, Hultman L, Nordgren S, Delbro DS (2007) P2Y2- and P2Y4 purinergic receptors are over-expressed in human colon cancer. Auton Autacoid Pharmacol 27(2):79–84PubMedCrossRefGoogle Scholar
  25. 25.
    Schafer R, Sedehizade F, Welte T, Reiser G (2003) ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 285(2):L376–385PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Beat M. Künzli
    • 1
    • 2
    • 3
  • Maria-Isabell Bernlochner
    • 1
  • Stephan Rath
    • 3
  • Samuel Käser
    • 2
  • Eva Csizmadia
    • 1
  • Keiichi Enjyoji
    • 1
  • Peter Cowan
    • 4
  • Anthony d’Apice
    • 4
  • Karen Dwyer
    • 4
  • Robert Rosenberg
    • 3
  • Aurel Perren
    • 5
  • Helmut Friess
    • 3
  • Christoph A. Maurer
    • 2
  • Simon C. Robson
    • 1
  1. 1.Liver and Transplantation Centers, Beth Israel Deaconess Medical CenterHarvard UniversityBostonUSA
  2. 2.Department of SurgeryKantonsspital LiestalLiestalSwitzerland
  3. 3.Department of General SurgeryTechnische Universität MünchenMunichGermany
  4. 4.Saint Vincent HospitalUniversity of MelbourneMelbourneAustralia
  5. 5.Department of PathologyUniversity of BernBernSwitzerland

Personalised recommendations