Purinergic Signalling

, Volume 7, Issue 1, pp 21–45 | Cite as

The GDA1_CD39 superfamily: NTPDases with diverse functions



The first comprehensive review of the ubiquitous “ecto-ATPases” by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.


NTPDases Ecto-ATPases ATP diphosphohydrolases Apyrases Purinergic signaling Protein glycosylation Plant growth Pathogen virulence Oncogenesis 



Nucleoside triphosphate diphosphohydrolase


ATP diphosphohydrolase


Apyrase conserved regions


Concanavalin A




Transmembrane domains


Extracellular domain



The contributions of Charles Caldwell, Mae Wu-Weis, Jerry Chiang, Takashi Mukasa, Kyoko Yarimizu, Yonghee Lee, Reem Javed, Nicole Pelletier, and Cheryl Li to research in the authors’ laboratory are gratefully acknowledged. I also thank Bill Stumph and Sandy Bernstein for support and the California Metabolic Research Foundation for research funding.


  1. 1.
    Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581PubMedGoogle Scholar
  2. 2.
    Khakh BS, Burnstock G (2009) The double life of ATP. Sci Am 301:84–90PubMedCrossRefGoogle Scholar
  3. 3.
    Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176PubMedCrossRefGoogle Scholar
  4. 4.
    Ziganshin AU, Hoyle CHV, Burnstock G (1994) Ecto-enzymes and metabolism of extracellular ATP. Drug Dev Res 32:134–146CrossRefGoogle Scholar
  5. 5.
    Zimmermann H (1996) Extracellular purine metabolism. Drug Dev Res 39:337–352CrossRefGoogle Scholar
  6. 6.
    Zimmermann H (1999) Two novel families of ecto-nucleotidases: molecular structures, catalytic properties and a search for function. Trends Pharmacol Sci 20:231–236PubMedCrossRefGoogle Scholar
  7. 7.
    Zimmermann H (2000) Extracellular metabolism of ATP and nucleotides. Naunyn-Schmiedeberg’s Arch Pharmacol 362:299–309CrossRefGoogle Scholar
  8. 8.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694PubMedCrossRefGoogle Scholar
  9. 9.
    Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430PubMedCrossRefGoogle Scholar
  10. 10.
    Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158:141–214PubMedCrossRefGoogle Scholar
  11. 11.
    Engelhardt WA (1957) Enzymes as structural elements of physiological mechanisms. Proc Int Symp Enzyme Chem (Tokyo) IUB Symp 2:163–166Google Scholar
  12. 12.
    Novikoff AB, Hausman DH, Podber E (1958) The localization of adenosine triphosphatase in liver: in situ staining and cell fractionation studies. J Histochem Cytochem 6:61–71PubMedCrossRefGoogle Scholar
  13. 13.
    Banerjee RK, Racker E (1977) Solubilization, purification, and characterization of a nucleoside triphosphatase from avian myeloblastosis virus. J Biol Chem 252:6700–6706PubMedGoogle Scholar
  14. 14.
    Treuheit MJ, Vaghy PL, Kirley TL (1992) Mg2+-ATPase from rabbit skeletal muscle transverse tubules is a 67-kilodalton glycoprotein. J Biol Chem 267:11777–11782PubMedGoogle Scholar
  15. 15.
    Banerjee RK (1981) Ecto-ATPase. Mol Cell Biochem 37:91–99PubMedCrossRefGoogle Scholar
  16. 16.
    Beaudoin AR, Sévigny J, Picher M (1996) ATP-diphosphohydrolases, apyrases and nucleotide phosphohydrolases: biochemical properties and functions. In: Lee AG (ed) Biomembranes, Vol. 5. JAI press Inc, Greenwich, pp 367–399Google Scholar
  17. 17.
    Valenzuela MA, López J, Depix M, Mancilla M, Kettlun AM, Catalán L, Chiong M, Garrido J, Traverso-Cori A (1989) Comparative subcellular distribution of apyrase from animal and plant sources. Characterization of microsomal apyrase. Comp Biochem Physiol B 93:911–919PubMedCrossRefGoogle Scholar
  18. 18.
    Asai T, Miura S, Sibley LD, Okabayashi H, Takeuchi T (1995) Biochemical and molecular characterization of nucleoside triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasma gondii. J Biol Chem 270:11391–11397PubMedCrossRefGoogle Scholar
  19. 19.
    Plesner L, Kirley TL, Knowles AF (1997) Ecto-ATPase. Recent progress on structure and function. Plenum, New YorkGoogle Scholar
  20. 20.
    Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tubersosum). Biochem Biophys Res Commun 218:916–923PubMedCrossRefGoogle Scholar
  21. 21.
    Kansas GS, Wood GS, Tedder TF (1991) Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 146:2235–2244PubMedGoogle Scholar
  22. 22.
    Maliszewski CR, Delespesse GJT, Schonenborn MA, Armitage RJ, Fanslow WC, Nakajima T, Baker E, Sutherland GR, Poindexter K, Birks C, Alpert A, Friend D, Gimpel SD, Gayle RB III (1994) The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J Immunol 153:3574–3583PubMedGoogle Scholar
  23. 23.
    Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB, Robbins PW (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122:307–323PubMedCrossRefGoogle Scholar
  24. 24.
    Vasconcelos EG, Ferreira ST, Carvalho TU, Souza W, Kettlun AM, Mancilla M, Valenzuela MA, Verjovski-Almeida S (1996) Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem 271:22139–22145PubMedCrossRefGoogle Scholar
  25. 25.
    Christoforidis S, Papamarcaki T, Galaris D, Kellner R, Tsolas O (1995) Purification and properties of human placental ATP diphosphohydrolase. Eur J Biochem 234:66–74PubMedCrossRefGoogle Scholar
  26. 26.
    Sévigny J, Dumas F, Beaudoin A (1997) Purification and identification by immunological techniques of different isoforms of mammalian ATP diphosphohydrolases. In: Plesner L, Kirley TL, Knowles AF (eds) Ecto-ATPase. Recent progress on structure and function. Plenum, New York, pp 143–151Google Scholar
  27. 27.
    Wang TF, Guidotti G (1996) CD39 is an ecto-(Ca2+, Mg2+)-apyrase. J Biol Chem 271:9898–9901PubMedCrossRefGoogle Scholar
  28. 28.
    Kaczmarek E, Koziak K, Sévigny J, Siegel JB, Anrather J, Beaudoin A, Bach F, Robson SC (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122PubMedCrossRefGoogle Scholar
  29. 29.
    Chadwick BP, Frischauff A-M (1998) The CD39-like gene family: identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster. Genomics 50:357–367PubMedCrossRefGoogle Scholar
  30. 30.
    Mateo J, Harden TK, Boyer JL (1999) Functional expression of a cDNA encoding a human ecto-ATPase. Br J Pharmacol 128:396–402PubMedCrossRefGoogle Scholar
  31. 31.
    Knowles AF, Chiang W-C (2003) Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase2. Arch Biochem Biophys 418:217–227PubMedCrossRefGoogle Scholar
  32. 32.
    Yeung G, Mulero JJ, McGowan DW, Bajwa SS, Ford JE (2000) CD39L2, a gene encoding a human nucleoside diphosphatase, predominantly expressed in the heart. Biochemistry 39:12916–12923PubMedCrossRefGoogle Scholar
  33. 33.
    Hicks-Berger CA, Chadwick BP, Frischauf A-M, Kirley TL (2000) Expression and characterization of soluble and membrane-bound human nucleoside triphosphate diphosphohydrolase (CD39L2). J Biol Chem 275:34041–34045PubMedCrossRefGoogle Scholar
  34. 34.
    Smith TM, Kirley TL (1998) Cloning, sequencing, and expression of a human brain E-type ATPase: homology to both ecto-ATPases and ecto-apyrases. Biochim Biophys Acta 1386:65–78PubMedCrossRefGoogle Scholar
  35. 35.
    Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39-L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 274:20064–20067PubMedCrossRefGoogle Scholar
  36. 36.
    Zimmermann H, Beaudoin AR, Bollen M, Goding JW, Guidotti G, Kirley TL, Robson SC, Sano K (2000) Proposed nomenclature for two novel nucleotide hydrolyzing enzyme families expressed on the cell surface. In: Vanduffel L, Lemmens R (eds) Ecto-ATPases and related ectonucleotidases. Shaker Publishing B. V., Maastricht, The NetherlandsGoogle Scholar
  37. 37.
    Wang TF, Guidotti G (1998) Golgi localization and functional expression of human uridine diphophatase. J Biol Chem 273:11392–11399PubMedCrossRefGoogle Scholar
  38. 38.
    Nagy AK, Knowles AF, Nagami G (1998) Molecular cloning of the chicken oviduct ecto-ATP-diphosphohydrolasae. J Biol Chem 273:16043–16049PubMedCrossRefGoogle Scholar
  39. 39.
    Wood E, Broekman MJ, Kirley TL, Diani-Moore S, Tickner M, Drosopoulos JH, Islam N, Park JI, Marcus AJ, Rifkind AB (2002) Cell-type specificity of ectonucleotidase expression and upregulation by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Arch Biochem Biophys 407:49–62PubMedCrossRefGoogle Scholar
  40. 40.
    Smith TM, Kirley TL (1999) Glycosylation is essential for functional expression of a human brain ecto-apyrase. Biochemistry 38:1509–1516PubMedCrossRefGoogle Scholar
  41. 41.
    Murphy DM, Kirley TL (2003) Asparagine 81, an invariant glycosylation site near apyrase conserved region 1, is essential for full enzymatic activity of ecto-nucleoside triphosphate diphosphohydrolase 3. Arch Biochem Biophys 413:107–115PubMedCrossRefGoogle Scholar
  42. 42.
    Wu JJ, Choi LE, Guidotti G (2005) N-linked oligosaccharides affect the enzymatic activity of CD39: diverse interactions between seven N-linked glycosylation sites. Mol Biol Cell 16:1661–1672PubMedCrossRefGoogle Scholar
  43. 43.
    Javed R, Yarimizu K, Pelletier N, Li C, Knowles AF (2007) Mutagenesis of lysine 62, asparagine 64, and conserved region 1 reduces the activity of human ecto-ATPase (NTPDase 2). Biochemistry 46:6617–6627PubMedCrossRefGoogle Scholar
  44. 44.
    Heine P, Braun N, Heilbronn A, Zimmermann H (1999) Functional characterization of rat ecto-ATPase and ecto-ATP diphosphohydrolase after heterologous expression in CHO cells. Eur J Biochem 262:102–107PubMedCrossRefGoogle Scholar
  45. 45.
    Chen W, Guidotti G (2001) Soluble apyrases release ADP during ATP hydrolysis. Biochem Biophys Res Commun 282:90–95PubMedCrossRefGoogle Scholar
  46. 46.
    Kukulski F, Lévesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson SC, Kirley TL, Sévigny J (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3, and 8. Purinergic Signal 1:193–204PubMedCrossRefGoogle Scholar
  47. 47.
    Shi X-J, Knowles AF (1994) Prevalence of the mercurial-sensitive ectoATPase in small cell lung carcinoma. Characterization and partial purification. Arch Biochem Biophys 315:177–184PubMedCrossRefGoogle Scholar
  48. 48.
    Caldwell CC, Davis MD, Knowles AF (1999) Ectonucleotidases of avian gizzard smooth muscle and liver plasma membranes: a comparative study. Arch Biochem Biophys 362:46–58PubMedCrossRefGoogle Scholar
  49. 49.
    Chiang W-C, Knowles AF (2008) Inhibition of the human NTPDase 2 by modification of an intramembrane cysteine by p-chloromercuriphenylsulfonate and oxidative cross-linking of the transmembrane domains. Biochemistry 47:8775–8785PubMedCrossRefGoogle Scholar
  50. 50.
    LeBel D, Poirier GG, Phaneuf S, St.-Jean P, Laliberté JF, Beaudoin AR (1980) Characterization and purification of calcium-sensitive ATP diphosphohydrolase from pig pancreas. J Biol Chem 255:1227–1233PubMedGoogle Scholar
  51. 51.
    Knowles AF, Isler RE, Reece JF (1983) The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochim Biophys Acta 731:88–96PubMedCrossRefGoogle Scholar
  52. 52.
    Knowles AF, Li C (2006) Molecular cloning and characterization of expressed human ecto-nucleoside triphosphate diphosphohydrolase 8 (E-NTPDase 8) and its soluble extracellular domain. Biochemistry 45:7323–7333PubMedCrossRefGoogle Scholar
  53. 53.
    Knowles AF, Nagy AK (1999) Inhibition of an ecto-ATP-diphosphohydrlase by azide. Eur J Biochem 262:349–358PubMedCrossRefGoogle Scholar
  54. 54.
    Crack BE, Pollard CE, Beukers MW, Roberts SM, Hunt SF, Ingall AH, McKechnie KC, IJzerman AP, Leff P (1995) Pharmacological and biochemical analysis of FPL67156, a novel, selective inhibitor of ecto-ATPase. Br J Pharmacol 114:475–481PubMedGoogle Scholar
  55. 55.
    Lévesque SA, Lavoie EG, Lecka J, Bigonnesse F, Sévigny J (2007) Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152:141–150PubMedCrossRefGoogle Scholar
  56. 56.
    Wang TF, Rosenberg PA, Guidotti G (1997) Characterization of brain ecto-apyrase: evidence for only one ectco-apyrase (CD39) gene. Mol Brain Res 47:295–302PubMedCrossRefGoogle Scholar
  57. 57.
    Kegel B, Braun N, Heine P, Malikszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36:1189–1997PubMedCrossRefGoogle Scholar
  58. 58.
    Lemmens R, Vanduffel L, Kittel A, Beaudoin AR, Benrezzak O, Sévigny J (2000) Distribution, cloning, and characterization of porcine nucleoside triphosphate diphosphohydrolase-1. Eur J Biochem 267:4106–4114PubMedCrossRefGoogle Scholar
  59. 59.
    Kittel A, Kaczmarek E, Sévigny J, Lengyel K, Csizmadia E, Robson SC (1999) CD39 as a caveolar-associated ectonucleotidase. Biochem Biophys Res Commun 262:596–599PubMedCrossRefGoogle Scholar
  60. 60.
    Koziak K, Kaczmarek E, Kittel A, Sévigny J, Blusztajn JK, Schulte am Esch J II, Imai M, Guckelberger O, Goepfert C, Qawi I, Robson SC (2000) Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae. J Biol Chem 275:2057–2062PubMedCrossRefGoogle Scholar
  61. 61.
    Kittel A, Csapo ZS, Csizmadia E, Jackson SW, Robson SC (2004) Co-localization of P2Y1 receptor and NTPDase1/CD39 within caveolae in human placenta. Eur J Histochem 48:253–259PubMedGoogle Scholar
  62. 62.
    Wu Y, Sun X, Kaczmarek E, Dwyer KM, Bianchi E, Usheva A, Robson SC (2006) RanBPM associates with CD39 and modulates ecto-nucleotidase activity. Biochem J 396:23–30PubMedCrossRefGoogle Scholar
  63. 63.
    Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, Drab M, Kurzchalia TV, Kasper M, Christoforidis S (2005) Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase CD39. J Biol Chem 280:26406–26414PubMedCrossRefGoogle Scholar
  64. 64.
    Makita K, Shimoyama T, Sakurai Y, Yagi H, Matsumoto M, Narita N, Sakamoto Y, Saito S, Ikeda Y, Suzuki S, Titani K, Fujimura Y (1998) Placental ecto-ATP diphosphohydrolase: its structural feature distinct from CD39, localization and inhibition on shear-induced platelet aggregation. Int J Hematol 68:297–310PubMedCrossRefGoogle Scholar
  65. 65.
    Matsumoto M, Sakurai Y, Kokubo T, Yagi H, Makita K, Matsui T, Titani K, FujimuraY NN (1999) The cDNA cloning of human placental ectco-ATP diphosphohydrolases I and II. FEBS Lett 453:335–340PubMedCrossRefGoogle Scholar
  66. 66.
    Marcus AJ, Broekman MJ, Drosopoulos JHF, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1360PubMedCrossRefGoogle Scholar
  67. 67.
    Robson SC, Kaczmarek E, Siegel J, Candinas D, Koziak K, Millan M, Hancock WW, Bach FH (1997) Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 185:153–163PubMedCrossRefGoogle Scholar
  68. 68.
    Alvarado-Castillo C, Lozano-Zarain P, Mateo J, Harden TK, Boyer JL (2002) A fusion protein of the human P2Y1 receptor and NTPDase1 exhibits functional activities of the native receptor and ectoenzyme and reduced signaling response to endogenously released nucleotides. Mol Pharmacol 62:521–528PubMedCrossRefGoogle Scholar
  69. 69.
    Enjyoji K, Sévigny J, Lin Y, Fremette PS, Christie P, Schulte Am Esch J II, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner D, Robson SC Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromoboregulation. Nat Med 5:1010–1017PubMedCrossRefGoogle Scholar
  70. 70.
    Pinsky DJ, Broekman MJ, Peschorn JJ, Stocking KL, Fujita T, Ramasamy R, Connolly ES Jr, Huang J, Kiss S, Zhang Y, Choudhri TF, McTaggart RA, Liao H, Drosopoulos JHF, Price VL, Marcus AJ, Maliszewski CR (2002) Elucidation of the thromboregulatory role of CD39/ectoapyrase in the ischemic brain. J Clin Invest 109:1031–1040PubMedGoogle Scholar
  71. 71.
    Marcus AJ, Broekman MJ, Drosopoulos JH, Olson KE, Islam N, Pinsky DJ, Levi R (2005) Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Sem Thromb Hemost 31:234–246CrossRefGoogle Scholar
  72. 72.
    Gayle RB III, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JHF, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ (1999) Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 101:1851–1859CrossRefGoogle Scholar
  73. 73.
    Buergler JM, Maliszewski CR, Broekman MJ, Kaluza GL, Schulz DG, Marcus AJ, Raizner AE, Kleiman NS, Ali NM (2005) Effects of solCD39, a novel inhibitor of platelet aggregation, on platelet deposition and aggregation after PTCA in a porcine model. J Thromb Thrombolysis 19:115–122PubMedCrossRefGoogle Scholar
  74. 74.
    Dwyer KM, Deaglio S, Gao W, Friedman G, Strom TB, Robson SC (2007) CD39 and control of cellular immune responses. Purinergic Signal 3:171–180PubMedCrossRefGoogle Scholar
  75. 75.
    Kirley TL (1997) Complementary DNA cloning and sequencing of the chicken muscle ecto-ATPase. Homology with the lymphoid cell activation antigen CD39. J Biol Chem 272:1076–1091PubMedGoogle Scholar
  76. 76.
    Vlajkovic SM, Housley GD, Greenwood D, Thorne PR (1999) Evidence for alternative splicing of ecto-ATPase associated with termination of purinergic transmission. Mol Brain Res 73:85–92PubMedCrossRefGoogle Scholar
  77. 77.
    Gao L, Dong L, Whitlock JP (1998) A novel response to dioxin. Induction of ecto-ATPase gene expression. J Biol Chem 273:15358–15365PubMedCrossRefGoogle Scholar
  78. 78.
    Mateo J, Kreda S, Henry CE, Harden TK, Boyer JL (2003) Requirement of cys399 for processing of the human ecto-ATPase (NTPDase2) and its implications for determination of the activities of splice variants of the enzyme. J Biol Chem 278:39960–39968PubMedCrossRefGoogle Scholar
  79. 79.
    Wang CJH, Vlajkovic SM, Housley GD, Braun N, Zimmermann H, Robson SC, Sévigny J, Soeller C, Thorne PR (2005) C-terminal splicing of NTPDase2 provides distinctive catalytic properties, cellular distribution and enzyme regulation. Biochem J 385:729–736PubMedCrossRefGoogle Scholar
  80. 80.
    Vlajkovic SM, Wang CJ, Soeller C, Zimmermann H, Thorne PR, Housley GD (2007) Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells. Int J Biochem Cell Biol 39:810–817PubMedCrossRefGoogle Scholar
  81. 81.
    Knowles AF (1988) Differential expression of ectoMg2+-ATPase and ectoCa2+-ATPase activities in human hepatoma cells. Arch Biochem Biophys 263:264–271PubMedCrossRefGoogle Scholar
  82. 82.
    Lu Q, Porter LD, Cui X, Sanborn BM (2001) Ecto-ATPase mRNA is regulated by FSH in Sertoli cells. J Androl 22:289–301PubMedGoogle Scholar
  83. 83.
    Filippini A, Riccioli A, De Cesaris P, Paniccia R, Teti A, Stefanini M, Conti M, Ziparo E (1994) Activation of inositol phospholipid turnover and calcium signaling in rat Sertoli cells by P2-purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134:1537–1545PubMedCrossRefGoogle Scholar
  84. 84.
    Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062PubMedCrossRefGoogle Scholar
  85. 85.
    Vorhoff T, Zimmermann H, Pelletier J, Sévigny J, Braun N (2005) Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal 1:259–270PubMedCrossRefGoogle Scholar
  86. 86.
    Lavoie EG, Kukulski F, Lévesque SA, Lecka J, Sévigny J (2001) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-3. Biochem Pharmacol 67:1917–1926CrossRefGoogle Scholar
  87. 87.
    Kirley TL, Crawford PA, Smith TM (2006) The structure of the nucleoside triphosphate diphosphohydrolases (NTPDases) as revealed by mutagenic and computational modeling analyses. Purinergic Signal 2:379–389PubMedCrossRefGoogle Scholar
  88. 88.
    Ivanenkov VV, Sévigny J, Kirley TL (2008) Trafficking and intracellular ATPase activity of human ecto-nucleotidase NTPDase3 and the effect of ER-targeted NTPDase3 on protein folding. Biochemistry 47:9184–9197PubMedCrossRefGoogle Scholar
  89. 89.
    Gaddie KJ, Kirley TL (2009) Conserved polar residues stabilize transmembrane domains and promote oligomerization in human nucleoside triphosphate diphosphohydrolase 3. Biochemistry 48:9437–9447PubMedCrossRefGoogle Scholar
  90. 90.
    Crawford PA, Gaddie K, Smith T, Kirley TL (2007) Characterization of an alternative splice variant of human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3): a possible modulator of nuleotidase activity and purinergic signaling. Arch Biochem Biophys 457:7–15PubMedCrossRefGoogle Scholar
  91. 91.
    Belcher SM, Zsarnovszky A, Crawford PA, Hemani H, Spurling L, Kirley TL (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep-wake behaviors. Neuroscience 137:1331–1346PubMedCrossRefGoogle Scholar
  92. 92.
    Appelbaum L, Skariah G, Mourrain P, Mignot E (2007) Comparative expression of p2x receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish. Brain Res 1174:66–75PubMedCrossRefGoogle Scholar
  93. 93.
    Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364PubMedCrossRefGoogle Scholar
  94. 94.
    Lavoie EG, Fausther M, Kauffenstein G, Kukulski F, Künzli BM, Friess H, Sévigny J (2010) Identification of the ectonucleotidases expressed in mouse, rat, and human Langerhans islets: potential role of NTPDase3 in insulin secretion. Am J Physiol Endocrinol Metab 299:E647–E656PubMedCrossRefGoogle Scholar
  95. 95.
    Strobel RS, Nagy AK, Knowles AF, Beugel J, Rosenberg MD (1996) Chicken oviductal ecto-ATP-diphosphohydrolase. Purification and characterization. J Biol Chem 271:16323–16331PubMedCrossRefGoogle Scholar
  96. 96.
    Strobel R (1993) Purification and immunochemical characterization of ecto-ATP-diphosphohydrolase from chicken oviduct and liver. Ph.D. thesis, University of MinnesotaGoogle Scholar
  97. 97.
    Knowles AF, Nagy AK, Strobel RS, Wu-Weis M (2002) Purification, characterization, cloning, and expression of the chicken liver ecto-ATP-diphosphohydrolase. Eur J Biochem 269:2373–2382PubMedCrossRefGoogle Scholar
  98. 98.
    Lewis-Carl S, Kirley TL (1997) Immunolocalization of the ecto-ATPase and ecto-apyrase in chicken gizzard and stomach. Purification and N-terminal sequence of the stomach ecto-apyrase. J Biol Chem 272:23645–23652PubMedCrossRefGoogle Scholar
  99. 99.
    Bigonnesse F, Lévesque SA, Kukulski F, Lecka J, Robson SC, Fernandes M, Sévigny J (2004) Cloning and characterization of mouse nucleoside triphosphate diphosphohydrolase-8. Biochemistry 43:5511–5519PubMedCrossRefGoogle Scholar
  100. 100.
    Fausther M, Lecka J, Kukulski F, Lévesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sévigny J (2007) Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol Gastrointest Liver Physiol 292:785–795CrossRefGoogle Scholar
  101. 101.
    Beaudoin AR, Vachereau A, Grondin G, St-Jean P, Rosenberg MD, Strobel R (1986) Microvesicular secretion, a mode of cell secretion associated with the presence of an ATP-diphosphohydrolase. FEBS Lett 203:1–2PubMedCrossRefGoogle Scholar
  102. 102.
    Sévigny J, Robson SC, Waelkens E, Csizmadia E, Smith RN, Lemmens R (2000) Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 275:5640–5647PubMedCrossRefGoogle Scholar
  103. 103.
    Biederbick A, Kosan C, Kunz J, Elsässer H-P (2000) First apyrase splice variants have different enzymatic properties. J Biol Chem 275:19018–19024PubMedCrossRefGoogle Scholar
  104. 104.
    Biederbick A, Rose S, Elsässer H-P (1999) A human intracellular apyrase-like protein, LALP70, localizes to lysosomal/autophagic vacuoles. J Cell Sci 112:2473–2484PubMedGoogle Scholar
  105. 105.
    Mulero J, Yeung G, Nelkin ST, Bright JM, McGowan DW, Ford JE (2000) Biochemical characterization of CD39L4. Biochemistry 39:12924–12928PubMedCrossRefGoogle Scholar
  106. 106.
    Tombetta ES, Helenius Q (1999) Glycoprotein reglucosylation and nucleotide sugar utilization in the secretory pathway: identification of a nucleoside diphosphatase in the endoplasmic reticulum. EMBO J 18:3282–3292CrossRefGoogle Scholar
  107. 107.
    Velasco JA, Castro R, Avila MA, Laborda J, DiPaolo JA, Cansado J, Notario V (1994) cph, a novel oncogene which cooperates with H-ras in the transformation of NIH3T3 fibroblasts. Oncogene 9:2065–2069PubMedGoogle Scholar
  108. 108.
    Valasco JA, Avila MA, Notario V (1999) The product of the cph oncogene is a truncated, nucleotide-binding protein that enhances cellular survival to stress. Oncogene 18:689–701CrossRefGoogle Scholar
  109. 109.
    Páez JG, Recio JA, Rouzaut A, Notario V (2001) Identity between the PCPH proto-oncogene and the CD39L4 (ENTPD5) ectonucleoside triphosphate diphosphohydrolase gene. Int J Oncol 19:1249–1254PubMedGoogle Scholar
  110. 110.
    Recio J, Páez JG, Maskeri B, Loveland M, Velasco JA, Notario V (2000) Both normal and transforming PCPH proteins have guanosine diphosphatase activity but only the oncoprotein cooperates with Ras in activating extracellular signal-regulated kinase ERK1. Cancer Res 60:1720–1728PubMedGoogle Scholar
  111. 111.
    Blanquez MJ, Regardera J, Marino J, Newman RE, Notario V (2002) Gradual deregulation and loss of PCPH expression in the progression of human laryngeal neoplasia. Mol Carcinog 35:186–195PubMedCrossRefGoogle Scholar
  112. 112.
    Blanzquez MJ, Arenas MI, Conde I, Tirado OM, Paniagua R, Notario V (2004) Deregulated expression of the PCPH proto-oncogene in human breast cancers. Int J Oncol 25:821–830Google Scholar
  113. 113.
    Villar J, Arenas MI, MacCarthy CM, Blanquez MJ, Tirado OM, Notario V (2007) PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase Cδ-dependent mechanism. Cancer Res 67:10859–10868PubMedCrossRefGoogle Scholar
  114. 114.
    Villar J, Quadri HS, Song I, Tomita Y, Tirado OM, Notario V (2009) PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Cα-mediated Bcl-2 stabilization. Cancer Res 69:102–110PubMedCrossRefGoogle Scholar
  115. 115.
    Read R, Hansen G, Kramer J, Finch R, Li L, Vogel P (2009) Ectonucleoside triphosphate diphosphohydrolase type 5 (Entpd5)-deficient mice develop progressive hepatopathy, hepatocellular tumors and spermatogenic arrest. Vet Pathol 46:491–504PubMedCrossRefGoogle Scholar
  116. 116.
    Braun N, Fengler S, Ebeling C, Servos J, Zimmermann H (2000) Sequencing, functional expression and characterization of rat NTPDase6, a nucleoside diphosphatase and novel family of the ecto-nucleoside triphosphate diphosphohydroalse family. Biochem J 351:639–647PubMedCrossRefGoogle Scholar
  117. 117.
    Shi J-D, Kukar T, Wang C-Y, Li Q-Z, Cruz PE, Davoodi-Semiromi A, Yang P, Gu Y, Lian W, Wu DH, She J-X (2001) Molecular cloning and characterization of a novel mammalian endo-apyrase (LALP1). J Biol Chem 276:17474–17478PubMedCrossRefGoogle Scholar
  118. 118.
    Massé K, Eason R, Bhamra S, Dale N, Jones EA (2006) Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus. Genomics 87:366–381PubMedCrossRefGoogle Scholar
  119. 119.
    Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD, Bogo MR (2010) NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol Part B 155:230–240CrossRefGoogle Scholar
  120. 120.
    Knowles AF (2009) The single NTPase gene of Drosophila melanogaster encodes an intracellular nucleoside triphosphate diphosphohydrolase 6 (NTPDase6). Arch Biochem Biophys 484:70–79PubMedCrossRefGoogle Scholar
  121. 121.
    Littleton JT, Ganetzky E (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43PubMedCrossRefGoogle Scholar
  122. 122.
    Hsieh H-L, Tong C-G, Thomas C, Roux SJ (1996) Light modulated abundance of a mRNA encoding a calmodulin-regulated chromatin associated NTPase in pea. Plant Mol Biol 30:135–147PubMedCrossRefGoogle Scholar
  123. 123.
    Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P (2008) The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth and development. Plant Physiol 147:1092–1109PubMedCrossRefGoogle Scholar
  124. 124.
    Etzler M, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy J (1999) A nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci USA 96:5856–5861PubMedCrossRefGoogle Scholar
  125. 125.
    Steinebrunner I, Jeter C, Song C, Roux SJ (2000) Molecular and biochemical comparison of two different apyrases from Arabidopsis thaliana. Plant Physiol Biochem 38:913–922CrossRefGoogle Scholar
  126. 126.
    Day RB, McAlvin CB, Loh J, Denny TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant-Microb Interact 13:1053–1070CrossRefGoogle Scholar
  127. 127.
    Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ (2010) Apyrase (nucleoside triphosphate-diphosphohyhydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. Plant Physiol 152:1073–1083PubMedCrossRefGoogle Scholar
  128. 128.
    Krishnan PS (1948) The preparation of apyrase from potato. Arch Biochem 16:474–476PubMedGoogle Scholar
  129. 129.
    Traverso-Cori A, Chaimovich H, Cori O (1965) Kinetic studies and properties of potato apyrase. Arch Biochem Biophys 109:173–184PubMedCrossRefGoogle Scholar
  130. 130.
    Traverso-Cori A, Traverso S, Reyes H (1970) Different molecular forms of potato apyrase. Arch Biochem Biophys 137:133–142PubMedCrossRefGoogle Scholar
  131. 131.
    Chen Y-R, Datta N, Roux S (1987) Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem 262:10689–10694PubMedGoogle Scholar
  132. 132.
    Steinebrunner I, Wu J, Sun Y, Corbett A, Roux SJ (2003) Disruption of apyrases inhibits pollen germination in Arabidopsis. Plant Physiol 131:1638–1647PubMedCrossRefGoogle Scholar
  133. 133.
    Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ (2007) Apyrases (nucleoside triphosphate diphosphohydrolases) play key role in growth control in Arabidopsis. Plant Physiol 144:961–975PubMedCrossRefGoogle Scholar
  134. 134.
    Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527PubMedCrossRefGoogle Scholar
  135. 135.
    Govindarajulu M, Kim S-Y, Libault M, Berg RH, Tanaka K, Stacey G, Taylor C (2009) GS52 ecto-apyrase plays a critical role during soybean nodulation. Plant Physiol 149:994–1004PubMedCrossRefGoogle Scholar
  136. 136.
    Tanaka K, Gilroy S, Jones AM, Stacey G (2010) Extracellular ATP signaling in plants. Trends Cell Biol 20:601–608PubMedCrossRefGoogle Scholar
  137. 137.
    Asai T, O’Sullivan WJ, Tatibanna M (1983) A potent nucleoside triphosphate hydrolase from the parasitic protozoan Toxoplasma gondii. Purification, some properties, and activation by thiol compounds. J Biol Chem 258:6816–6822PubMedGoogle Scholar
  138. 138.
    Bermudes D, Peck KR, Afifi Afifi M, Beckers CJM, Joiner K (1994) Tandemly repeated genes encode nucleoside triphosphate hydrolase isoforms secreted into the parasitophorus vacuole of Toxoplasma gondii. J Biol Chem 269:29252–29260PubMedGoogle Scholar
  139. 139.
    Nakkar V, Beckers CJ, Polootsky V, Joiner KA (1998) Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase. Mol Biochem Parasitol 97:209–220CrossRefGoogle Scholar
  140. 140.
    DeMarco R, Kowaltowski AT, Mortara RA, Verjovski-Almeida S (2003) Molceular characterization and immunolocalization of Schistosoma mansoni ATP-diphosphohydrolase. Biochem Biophys Res Commun 307:831–838PubMedCrossRefGoogle Scholar
  141. 141.
    Levano-Garcia J, Mortara RA, Verjovski-Almneida S, DeMarco R (2007) Characterization of Schistosoma mansoni ATPDase2 gene, a novel apyrase family member. Biochem Biophys Res Commun 352:384–389PubMedCrossRefGoogle Scholar
  142. 142.
    Fietto JLR, DeMarco R, Nascimento IP, Castro IM, Carvalho TMU, de Souza W, Bahia MT, Alves MJM, Verjovski-Almeida S (2004) Characterization and immunolocalization of an NTP diphosphohydrolse of Trypanosoma cruzi. Biochem Biophys Res Commun 316:454–460PubMedCrossRefGoogle Scholar
  143. 143.
    Sansom FM, Newton HJ, Crikis S, Cianciotto NP, Cowan PJ, d’Apice AJF, Hartland EL (2007) A bacterial ecto-triphosphate diphosphohydroalse similar to human CD39 is essential for intracellular multiplication of Legionella pneumophila. Cell Microbiol 9:1922–1935PubMedCrossRefGoogle Scholar
  144. 144.
    Vivian J, Riedmaier P, Ge H, Le Nours J, Sansom FM, Wilce MCJ, Byres E, Dias M, Schmidberger JW, d’Apice AJF, Hartland EL, Rossjohn J, Beddoe T (2010) Crystal structure of a Legionella pneumophila ecto-triphosphate diphosphohydrolase, a structural and functional homolog of the eukaryotic NTPDases. Structure 18:228–238PubMedCrossRefGoogle Scholar
  145. 145.
    Sansom FM, Robson SC, Hartland EL (2008) Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Micro Mol Biol Rev 72:765–781CrossRefGoogle Scholar
  146. 146.
    Knowles AF, Leng L (1984) Purification of a low affinity Mg2+(Ca2+)-ATPase from the plasma membranes of a human oat cell carcinoma. J Biol Chem 259:10919–10924PubMedGoogle Scholar
  147. 147.
    Stout JG, Kirley TL (1996) Control of cell membrane ecto-ATPase by oligomerization state: intermolecular corss-linking modulates ATPase activity. Biochemistry 35:8289–8298PubMedCrossRefGoogle Scholar
  148. 148.
    Ivanenkov VV, Meller J, Kirley TL (2005) Characterization of disulfide bonds in human nucleoside triphosphate diphosphohydroalse 3 (NTPDase3): implications for NTPDase structural modeling. Biochemistry 44:8998–9012PubMedCrossRefGoogle Scholar
  149. 149.
    Nakkar V, Samuel BU, Ngo EO, Joiner KA (1999) Targeted reduction of nucleoside triphosphate hydrolase by antisense RNA inhibits Toxoplasma gondii proliferation. J Biol Chem 274:5083–5087CrossRefGoogle Scholar
  150. 150.
    Tan F, Xu X, Pan C-W, Ding J-Q, Chen X-G (2010) Monoclonal antibodies against nucleoside triphosphate hydrolase II can reduce the replication of Toxoplasma gondii. Parasitol Int 59:141–146PubMedCrossRefGoogle Scholar
  151. 151.
    Vasconcelos EG, Nascimento PS, Meirelles MN, Verjovski-Almeida S, Ferreira ST (1993) Characterization and localization of an ATP diphosphohydrolase on the external surface of the tegument of Schistosoma mansoni. Mol Biochem Parasitol 58:205–214PubMedCrossRefGoogle Scholar
  152. 152.
    Santos RF, Possa MAS, Bastos MS, Guedes PMM, Almeida MR, DeMarco R, Verjovski-Almeida S, Bahia M, Fietto JR (2009) Influence of ecto-nucleoside triphosphate diphosphohydroalse activity on Trypanosoma cruzi infectivity and virulence. PLOS NTDS 3:e387Google Scholar
  153. 153.
    Sansom FM, Riedmaier P, Newton HJ, Dunstone MA, Muller CE, Stephan H, Byres E, Beddoe T, Rossjohn J, Cowan P, d’Apice AJF, Robson SC, Hartland E (2008) Enzymatic properties of an ecto-nucleoside triphophsate diphosphohydrolase from Legionella pneumophila. Substrate specificity and requirement for virulence. J Biol Chem 283:12909–12918PubMedCrossRefGoogle Scholar
  154. 154.
    Smith TM Jr, Kirley TL, Hennessey TM (1997) A soluble ecto-ATPae from Tetrahymena thermophile: purification and similarity to the membrane-bound ecto-ATPase of smooth muscle. Arch Biochem Biophys 337:351–359PubMedCrossRefGoogle Scholar
  155. 155.
    Hennessey TM (2005) Responses of the ciliates Tetrahymena and Paramecium to external ATP and GTP. Purinergic Signal 1:101–110PubMedCrossRefGoogle Scholar
  156. 156.
    Caffaro CE, Hirschberg CB (2006) Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 39:805–812PubMedCrossRefGoogle Scholar
  157. 157.
    D’Alessio C, Trombetta ES, Parodi AJ (2003) Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe. J Biol Chem 278:22379–22387PubMedCrossRefGoogle Scholar
  158. 158.
    Gao X-D, Kaigorodov V, Jigami Y (1999) YND1, a homologue of GDA1, encodes membrane-bound apyrase required for Golgi N- and O-glycosylation in Saccharomyces cerevisiae. J Biol Chem 274:21450–21456PubMedCrossRefGoogle Scholar
  159. 159.
    Zhong X, Guidotti G (1999) A yeast Golgi E-type ATPase with an unusual membrane topology. J Biol Chem 247(32704–32):711Google Scholar
  160. 160.
    Lin S-H (1989) Localization of the ecto-ATPase (ecto-nucleotidase) in the rat hepatocyte plasma membrane. Implication for the function of the ecto-ATPase. J Biol Chem 264:14403–14407PubMedGoogle Scholar
  161. 161.
    Lin S-H, Guidotti G (1989) Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto-ATPase. The primary structure of the ecto-ATPase is similar to that of the human biliary glycoprotein I. J Biol Chem 264:14408–14414PubMedGoogle Scholar
  162. 162.
    Zebisch M, Sträter N (2007) Characterization of rat NTPDase1, -2, and -3 ectodomains refolded from bacterial inclusion bodies. Biochemistry 46:11945–11956PubMedCrossRefGoogle Scholar
  163. 163.
    Murphy-Piedmonte DM, Crawford PA, Kirley TL (2005) Bacterial expression, folding, purification and characterization of soluble NTPDase5 (CD39L4) ecto-nucleotidase. Biochim Biophys Acta 1747:251–259PubMedGoogle Scholar
  164. 164.
    Ivanenkov VV, Murphy-Pidmonte DM, Kirley TL (2003) Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Biochemistry 42:11726–11735PubMedCrossRefGoogle Scholar
  165. 165.
    North RA (1996) Families of ion channels with two hydrophobic segments. Curr Opin Cell Biol 8:474–483PubMedCrossRefGoogle Scholar
  166. 166.
    Browne LE, Jiang L-H, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31:229–237PubMedCrossRefGoogle Scholar
  167. 167.
    Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion site in acid-sensing ion channels and P2X receptors. Nature 460:599–604PubMedCrossRefGoogle Scholar
  168. 168.
    Beeler TJ, Gable K, Keffer JM (1983) Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle. Biochim Biophys Acta 734:221–234PubMedCrossRefGoogle Scholar
  169. 169.
    Beeler TJ, Wang T, Gable K, Shirley L (1985) Comparison of the rat microsomal Mg2+-ATPase of various tissues. Arch Biochem Biophys 243:644–654PubMedCrossRefGoogle Scholar
  170. 170.
    Sabbadini RA, Dahms AS (1989) Biochemical properties of isolated transverse tubular membranes. J Bioenerg Biomembranes 21:1163–1213CrossRefGoogle Scholar
  171. 171.
    Megías A, Martínez-Senac MM, Delgado J, Saborido A (2001) Regulation of transverse tubule ecto-ATPase activity in chicken skeletal muscle. Biochem J 353:521–529PubMedCrossRefGoogle Scholar
  172. 172.
    Caldwell C, Norma V, Urbina A, Jarvis A, Quinonez C, Stemm M, Dahms AS (1997) Regulatory differences among avian ecto-ATPases. Biochem Biophys Res Commun 238:728–732PubMedCrossRefGoogle Scholar
  173. 173.
    Caldwell CC, Hornyak SC, Pendleton E, Campbell D, Knowles AF (2001) Regulation of chicken gizzard ecto-ATPase activity by modulators that affects its oligomerization status. Arch Biochem Biophys 387:107–116PubMedCrossRefGoogle Scholar
  174. 174.
    Stout JG, Kirley TL (1994) Purification and characterization of the ecto-Mg-ATPase of chicken gizzard smooth muscle. J Biochem Biophys Methods 29:61–75PubMedCrossRefGoogle Scholar
  175. 175.
    Grinthal G, Guidotti G (2006) CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why? Purinergic Signal 2:391–398PubMedCrossRefGoogle Scholar
  176. 176.
    Grinthal G, Guidotti G (2002) Transmembrane domains confer substrate specificities and adenosine diphosphate hydrolysis mechanism on CD39, CD39L1, and chimeras. Biochemistry 41:1947–1956PubMedCrossRefGoogle Scholar
  177. 177.
    Chiang W-C, Knowles AF (2008) Transmembrane domain interactions affect the stability of the extracellular domain of the human NTPDase2. Arch Biophys Biochem 472:89–99CrossRefGoogle Scholar
  178. 178.
    Wang T-F, Ou Y, Guidotti G (1998) The transmembrane domains of ectoapyrase (CD39) affect its enzymatic and quaternary structure. J Biol Chem 273:24814–24821PubMedCrossRefGoogle Scholar
  179. 179.
    Li CS, Lee Y, Knowles AF (2010) The stability of chicken NTPDase8 requires both of its transmembrane domains. Biochemistry 49:134–146PubMedCrossRefGoogle Scholar
  180. 180.
    Mukasa T, Lee Y, Knowles AF (2005) Either the carboxyl- or the amino-terminal region of the human ecto-ATPase (E-NTPDase 2) confers detergent and temperature sensitivity to the chicken ecto-ATP-diphosphohydrolase (E-NTPDase 8). Biochemistry 44:11160–11170PubMedCrossRefGoogle Scholar
  181. 181.
    Grinthal G, Guidotti G (2004) Dynamic motions of CD39 transmembrane domains regulate and are regulated by the enzymatic active site. Biochemistry 43:13849–13858PubMedCrossRefGoogle Scholar
  182. 182.
    Gaddie KJ, Kirley TL (2010) Proline residues link the active site to transmembrane domain movements in human nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). Purinergic Signal 6:327–337PubMedCrossRefGoogle Scholar
  183. 183.
    Grinthal G, Guidotti G (2007) Bilayer mechanical properties regulate the transmembrane helix mobility and enzymatic state of CD39. Biochemistry 46:279–290PubMedCrossRefGoogle Scholar
  184. 184.
    Murphy DM, Ivanenkov VV, Kirley TL (2002) Identification of cysteine residues responsible for oxidative cross-linking and chemical inhibition of human nucleoside triphosphate diphophohydrolase 3. J Biol Chem 277:6162–6169PubMedCrossRefGoogle Scholar
  185. 185.
    Eilers M, Patel AB, Liu W, Smith SO (2002) Comparison of the helix interactions in membrane and soluble α-bundle proteins. Biophys J 82:2720–2736PubMedCrossRefGoogle Scholar
  186. 186.
    Kleiger G, Grothe R, Mallick P, Eisenberg D (2002) GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 41:5990–5997PubMedCrossRefGoogle Scholar
  187. 187.
    Hicks-Berger CA, Kirley TL (2000) Expression and characterization of human ecto-ATPase and chimeras with CD39 ecto-apyrase. IUBMB Life 50:43–50PubMedCrossRefGoogle Scholar
  188. 188.
    Failer BU, Ashrafi A, Schmalzing G, Zimmermann H (2003) Determination of native oligomerc state and substrate specificity of rat NTPDase1 and NTPDase2 after heterologous expression in Xenopus oocytes. Eur J Biochem 270:1802–1809PubMedCrossRefGoogle Scholar
  189. 189.
    Musi E, Islam N, Drosopoulos JHF (2007) Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants. Arch Biochem Biophys 461:30–39PubMedCrossRefGoogle Scholar
  190. 190.
    Zebisch M, Sträter N (2008) Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci USA 105:6882–6887PubMedCrossRefGoogle Scholar
  191. 191.
    Hurley JH (1996) The sugar kinase/heat shock protein 70/actin superfamily: implications of conserved structure for mechanism. Annu Rev Biophys Biomol Struct 25:137–162PubMedCrossRefGoogle Scholar
  192. 192.
    Dzhandzhugazyan KN, Plesner L (2000) Diethyl pyrocarbonate inactivates CD39/ecto-ATPDase by modifying His-59. Biochim Biophys Acta 1466:267–277PubMedCrossRefGoogle Scholar
  193. 193.
    Kirley TL (1988) Purification and characterization of the Mg2+-ATPase from rabbit skeletal muscle transverse tubules. J Biol Chem 283:12682–12689Google Scholar
  194. 194.
    Zinchuk VS, Okada T, Kobayashi T (1999) Ecto-ATPase activity in the rat cardiac muscle: biochemical characteristics and histocytochemical localization. Cell Tissue Res 298:499–509PubMedCrossRefGoogle Scholar
  195. 195.
    Grinthal A, Guidotti G (2000) Substitution of His59 converts CD39 apyrase into an ADPase in a quaternary structure dependent manner. Biochemistry 39:9–16PubMedCrossRefGoogle Scholar
  196. 196.
    Drosopoulos JH, Broekman MJ, Islam N, Maliszewski CR, Gayle RB III, Marcus AJ (2000) Site-directed mutagenesis of human endothelial cell ecto-ADPase/soluble CD39: requirement of glutamate 174 and serine 218 for enzyme activity and inhibition of platelet recruitment. Biochemistry 39:6936–6943PubMedCrossRefGoogle Scholar
  197. 197.
    Drosopoulos JHF (2000) Roles of asp54 and asp213 in Ca2+ utilization by soluble human CD39/ecto-nucleotidase. Arch Biochem Biophys 406:85–95CrossRefGoogle Scholar
  198. 198.
    Basu S, Murphy-Piedmonte DM, Kirley TL (2004) Conserved lysine 79 is important for activity of ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). Purinergic Signal 1:51–58PubMedCrossRefGoogle Scholar
  199. 199.
    Kristensen O, Laurberg M, Lijas A, Kastrup JS, Gajhede M (2004) Structural characterization of the stringent response related exopolyphosphatase/guanosine pentaphosphate phosphohydrolase protein family. Biochemistry 43:8894–8900PubMedCrossRefGoogle Scholar
  200. 200.
    Kozakiewicz A, Neumann P, Banach M, Komoszyński M, Wojtczak A (2008) Modeling studies of potato nucleoside triphosphate diphosphohydrolase NTPDase1: an insight into the catalytic mechanism. Acta Biochim Polonica 55:141–150Google Scholar
  201. 201.
    Kukulski F, Komoszyński M (2003) Purification and characterization of NTPDase1 (ecto-apyrase) and NTPDase2 (ecto-ATPase) from porcine brain cortex synaptosomes. Eur J Biochem 270:3447–3454PubMedCrossRefGoogle Scholar
  202. 202.
    Yanagisawa K, Resnick D, Abeijon C, Robbins PW, Hirschberg CB (1990) A guanosine diphosphatase enriched in Golgi vesicles of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem 265:19351–19355PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistrySan Diego State UniversitySan DiegoUSA

Personalised recommendations