Purinergic Signalling

, Volume 6, Issue 3, pp 297–306

Human neutrophils do not express purinergic P2X7 receptors

  • Guadalupe Martel-Gallegos
  • María T. Rosales-Saavedra
  • Juan P. Reyes
  • Griselda Casas-Pruneda
  • Carmen Toro-Castillo
  • Patricia Pérez-Cornejo
  • Jorge Arreola
Brief Communication

Abstract

It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X7 receptors (P2X7R) to elicit Ca2+ entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X7R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X7R activation to downstream effectors, immune-labelling of P2X7R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X7R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X7R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells—a model cell for human neutrophils. We concluded that P2X7R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered.

Keywords

Human Neutrophils Purinergic receptors Protein Whole cell current 

References

  1. 1.
    Adrian K, Bernhard MK, Breitinger HG, Ogilvie A (2000) Expression of purinergic receptors (ionotropic P2X1-7 and metabotropic P2Y1-11) during myeloid differentiation of HL60 cells. Biochim Biophys Acta 1492:127–138PubMedGoogle Scholar
  2. 2.
    Akbar GK, Mills DC, Kunapuli SP (1997) Characterization of extracellular nucleotide-induced Mac-1 (alphaM beta2 integrin) surface expression on peripheral blood leukocytes. Biochem Biophys Res Commun 233:71–75CrossRefPubMedGoogle Scholar
  3. 3.
    Axtell RA, Sandborg RR, Smolen JE, Ward PA, Boxer LA (1990) Exposure of human neutrophils to exogenous nucleotides causes elevation in intracellular calcium, transmembrane calcium fluxes, and an alteration of a cytosolic factor resulting in enhanced superoxide production in response to FMLP and arachidonic acid. Blood 75:1324–1332PubMedGoogle Scholar
  4. 4.
    Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 4:1910–1917Google Scholar
  5. 5.
    Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5’-triphosphate and adenosine as endogenous signalling molecules in immunity and inflammation. Pharmacol Ther 112:358–404CrossRefPubMedGoogle Scholar
  6. 6.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797CrossRefPubMedGoogle Scholar
  7. 7.
    Casas-Pruneda G, Reyes JP, Pérez-Flores G, Pérez-Cornejo P, Arreola J (2009) Functional interactions between P2X4 and P2X7 receptors from mouse salivary epithelia. J Physiol 587:2887–901CrossRefPubMedGoogle Scholar
  8. 8.
    Chen Y, Shukla A, Namiki S, Insel PA, Junger WG (2004) A putative osmoreceptor system that controls neutrophil function through the release of ATP, its conversion to adenosine, and activation of A2 adenosine and P2 receptors. J Leukoc Biol 76:245–253CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795CrossRefPubMedGoogle Scholar
  10. 10.
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC (1978) Terminal differentiation of human promyelocytic leucemia cells induced by dimethylsulfoxide and other polar compounds. Proc Natl Acad Sci USA 75:2458–2462CrossRefPubMedGoogle Scholar
  11. 11.
    Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM (2000) Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett 475:39–42CrossRefPubMedGoogle Scholar
  12. 12.
    Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM (2001) Role of P2Y11 receptors in hematopoiesis. Drug Dev Res 52:156–163CrossRefGoogle Scholar
  13. 13.
    Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151:571–579CrossRefPubMedGoogle Scholar
  14. 14.
    Dubyak GR, El-Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606PubMedGoogle Scholar
  15. 15.
    Elferink JG, De Koster BM, Boonen GJ, De Priester W (1992) Inhibition of neutrophil chemotaxis by purinoceptor agonists. Arch Int Pharmacodyn Ther 317:93–106PubMedGoogle Scholar
  16. 16.
    Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1β processing and release. J Immunol 176:3877–3883PubMedGoogle Scholar
  17. 17.
    Freyer DR, Boxer LA, Axtell RA, Todd RF III (1988) Stimulation of human neutrophil adhesive properties by adenine nucleotides. J Immunol 141:580–586PubMedGoogle Scholar
  18. 18.
    Gasmi L, McLennan AG, Edwards SW (1996) The diadenosine polyphosphates Ap3A and Ap4A and adenosine triphosphate interact with granulocyte-macrophage colony-stimulating factor to delay neutrophil apoptosis: implications for neutrophil: platelet interactions during inflammation. Blood 87:3442–3449PubMedGoogle Scholar
  19. 19.
    Gu BJ, Zhang WY, Bendall LJ, Chessell IP, Buell GN, Wiley JS (2000) Expression of P2X7 purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X7 receptors. Am J Physiol 279:C1189–197Google Scholar
  20. 20.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391:85–100CrossRefPubMedGoogle Scholar
  21. 21.
    Hazama A, Shimizu T, Ando-Akatsuka Y, Hayashi S, Tanaka S, Maeno E, Okada Y (1999) Swelling-induced, CFTR-independent ATP release from a human epithelial cell line: lack of correlation with volume-sensitive Cl channels. J Gen Physiol 114:525–533CrossRefPubMedGoogle Scholar
  22. 22.
    Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 157:5627–5637PubMedGoogle Scholar
  23. 23.
    Kaba NK, Schultz J, Law FY, Lefort CT, Martel-Gallegos G, Kim M, Waugh RE, Arreola J, Knauf PA (2008) Inhibition of Na+/H+ exchanger enhances low pH-induced L-selectin shedding and beta2-integrin surface expression in human neutrophils. Am J Physiol Cell Physiol 295:C1454–C1463CrossRefPubMedGoogle Scholar
  24. 24.
    Kaneider NC, Mosheimer B, Reinisch N, Patsch JR, Wiedermann CJ (2004) Inhibition of thrombin-induced signaling by resveratol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and platelet–neutrophil interactions. Thromb Res 144:185–194CrossRefGoogle Scholar
  25. 25.
    Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PP (2001) International union of pharmacology: XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118PubMedGoogle Scholar
  26. 26.
    Labasi JM, Petrushova N, Donovan N, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445PubMedGoogle Scholar
  27. 27.
    LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231CrossRefPubMedGoogle Scholar
  28. 28.
    Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflam 4:5CrossRefGoogle Scholar
  29. 29.
    Malech HL, Gallin JI (1987) Current concepts: immunology. Neutrophils in human diseases. N Engl J Med 317:687–694CrossRefPubMedGoogle Scholar
  30. 30.
    Miyabe K, Sakamoto N, Wu YH, Mori N, Sakamoto H (2004) Effects of platelet release products on neutrophilic phagocytosis and complement receptors. Thromb Res 114:23–36Google Scholar
  31. 31.
    Mohanty JG, Raible DG, McDermott LJ, Pelleg A, Schulman ES (2001) Effects of purine and pyrimidine nucleotides on intracellular Ca2+ in human eosinophils: activation of purinergic P2Y receptors. J Allergy Clin Immunol 107:849–855CrossRefPubMedGoogle Scholar
  32. 32.
    Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582CrossRefPubMedGoogle Scholar
  33. 33.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  34. 34.
    Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:2992–3002CrossRefGoogle Scholar
  35. 35.
    Oryu M, Sakamoto H, Ogawa Y, Tanaka S, Sakamoto N (1996) Effects of released products from platelets on neutrophilic adhesion to endothelial cells and nylon fibers. J Leukoc Biol 60:77–80PubMedGoogle Scholar
  36. 36.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082CrossRefPubMedGoogle Scholar
  37. 37.
    Ramirez AN, Kunze DL (2002) P2X purinergic receptor channel expression and function in bovine aortic endothelium. Am J Physiol Heart Circ Physiol 282:H2106–H2116PubMedGoogle Scholar
  38. 38.
    Reyes JP, Pérez-Cornejo P, Hernández-Carballo CY, Srivastava A, Romanenko V, Gonzalez M, Melvin JE, Arreola J (2008) Na+ dependence of anion permeation and block of P2X7R from mouse parotid glands. J Membr Biol 223:73–85CrossRefPubMedGoogle Scholar
  39. 39.
    Seifert R, Wenzel K, Eckstein F, Schultz G (1989) Purine and pyrimidine nucleotides potentiate activation of NADPH oxidase and degranulation by chemotactic peptides and induce aggregation of human neutrophils via G proteins. Eur J Biochem 181:277–285CrossRefPubMedGoogle Scholar
  40. 40.
    Sengstake S, Boneberg EM, Illges H (2006) CD21 and CD62L shedding are both inducible via P2X7Rs. Int Immunol 18:1171–1178CrossRefPubMedGoogle Scholar
  41. 41.
    Sud'ina GF, Mirzoeva OK, Galkina SI, Pushkareva MA, Ullrich V (1998) Involvement of ecto-ATPase and extracellular ATP in polymorphonuclear granulocyte–endothelial interactions. FEBS Lett 423:243–248CrossRefPubMedGoogle Scholar
  42. 42.
    Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–6763PubMedGoogle Scholar
  43. 43.
    Tuluc F, Bredetean O, Brailoiu E, Meshki J, Garcia A, Dun NJ, Kunapuli SP (2005) The priming effect of extracellular UTP on human neutrophils: role of calcium released from thapsigargin-sensitive intracellular stores. Purinergic Signalling 1:359–368CrossRefPubMedGoogle Scholar
  44. 44.
    Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179:8544–8553PubMedGoogle Scholar
  45. 45.
    Verghese MW, Kneisler TB, Boucheron JA (1996) P2U agonists induce chemotaxis and actin polymerization in human neutrophils and differentiated HL60 cells. J Biol Chem 271:15597–15601CrossRefPubMedGoogle Scholar
  46. 46.
    Walrand S, Valeix S, Rodriguez C, Ligot P, Chassagne J, Vasson MP (2003) Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 331:103–110CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Guadalupe Martel-Gallegos
    • 1
  • María T. Rosales-Saavedra
    • 1
  • Juan P. Reyes
    • 2
  • Griselda Casas-Pruneda
    • 1
  • Carmen Toro-Castillo
    • 2
  • Patricia Pérez-Cornejo
    • 1
  • Jorge Arreola
    • 2
  1. 1.School of MedicineUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico
  2. 2.Institute of PhysicsUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations