Purinergic Signalling

, Volume 5, Issue 3, pp 273–275 | Cite as

Prostatic acid phosphatase, a neglected ectonucleotidase

Brief Communication


Two recent papers reveal that the soluble and secreted prostatic acid phosphatase, an enzyme that has long served as a diagnostic marker for prostate cancer, has a membrane-bound splice variant. This enzyme exhibits ecto-5′-nucleotidase activity, is widely distributed, and implicated in the formation of chronic pain. While prostatic acid phosphatase hydrolyzes phosphomonoesters other than 5′-nucleoside monophosphates these novel data suggest that, in addition to ecto-5′-nucleotidase and the alkaline phosphatases, prostatic acid phosphatase must be taken into account in future studies on extracellular adenosine production.


Ecto-5′-nucleotidase Prostatic acid phosphatase Alkaline phosphatase Pain 



This work was supported by the Deutsche Forschungsgemeinschaft (140/17-3)


  1. 1.
    Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341. doi: 10.1124/pr.58.3.3 PubMedCrossRefGoogle Scholar
  2. 2.
    Smith TM, Kirley TL (2006) The calcium activated nucleotidases: a diverse family of soluble and membrane associated nucleotide hydrolyzing enzymes. Purinergic Signal 2:327–333. doi: 10.1007/s11302-005-5300-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309. doi: 10.1007/s002100000309 PubMedCrossRefGoogle Scholar
  4. 4.
    Zimmermann H, Mishra SK, Shukla V, Langer D, Gampe K, Grimm I, Delic J, Braun N (2007) Ecto-nucleotidases, molecular properties and functional impact. A R Acad Nac Farm 73:537–566Google Scholar
  5. 5.
    Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. BBA Mol Cell Res 1783:673–694Google Scholar
  6. 6.
    Zylka MJ, Sowa NA, Taylor-Blake B, Twomey MA, Herrala A, Voikar V, Vihko P (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60:111–122. doi: 10.1016/j.neuron.2008.08.024 PubMedCrossRefGoogle Scholar
  7. 7.
    Quintero IB, Araujo CL, Pulkka AE, Wirkkala RS, Herrala AM, Eskelinen EL, Jokitalo E, Hellstrom PA, Tuominen HJ, Hirvikoski PP, Vihko PT (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67:6549–6554. doi: 10.1158/0008-5472.CAN-07-1651 PubMedCrossRefGoogle Scholar
  8. 8.
    Silverman JD, Kruger L (1988) Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents. Somatosens Res 5:219–246PubMedCrossRefGoogle Scholar
  9. 9.
    Ogawa K, Sakai M, Inomata K (1982) Recent findings on ultracytochemistry of thiamin phosphatases. Ann N Y Acad Sci 378:188–214. doi: 10.1111/j.1749-6632.1982.tb31197.x PubMedCrossRefGoogle Scholar
  10. 10.
    Sanyal S, Rustioni A (1974) Phosphatases in the substantia gelatinosa and motoneurones: a comparative histochemical study. Brain Res 76:161–166. doi: 10.1016/0006-8993(74) 90523-X PubMedCrossRefGoogle Scholar
  11. 11.
    Van Etten RL (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann N Y Acad Sci 390:27–51. doi: 10.1111/j.1749-6632.1982.tb40302.x PubMedCrossRefGoogle Scholar
  12. 12.
    Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341. doi: 10.1007/s11302-005-5435-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Geddes K, Philpott DJ (2008) A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology 135:8–12. doi: 10.1053/j.gastro.2008.06.006 PubMedCrossRefGoogle Scholar
  14. 14.
    Langer D, Hammer K, Koszalka P, Schrader J, Robson S, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217. doi: 10.1007/s00441-008-0681-x PubMedCrossRefGoogle Scholar
  15. 15.
    Georas SN (2009) Lysophosphatidic acid and autotaxin: emerging roles in innate and adaptive immunity. Immunol Res in pressGoogle Scholar
  16. 16.
    Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett 571:197–204. doi: 10.1016/j.febslet.2004.06.083 PubMedCrossRefGoogle Scholar
  17. 17.
    Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone 27:575–584. doi: 10.1016/S8756-3282(00)00368-9 PubMedCrossRefGoogle Scholar
  18. 18.
    Hayman AR (2008) Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 41:218–223. doi: 10.1080/08916930701694667 PubMedCrossRefGoogle Scholar
  19. 19.
    Mitíc N, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 439:154–164. doi: 10.1016/j.abb.2005.05.013 PubMedCrossRefGoogle Scholar
  20. 20.
    Kaunitz JD, Yamaguchi DT (2008) TNAP, TrAP, ecto-purinergic signaling, and bone remodeling. J Cell Biochem 105:655–662. doi: 10.1002/jcb.21885 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Cell Biology and NeuroscienceBiocenter, Goethe-UniversityFrankfurtGermany

Personalised recommendations