Purinergic Signalling

, 5:197 | Cite as

The P2X7 receptor and intracellular pathogens: a continuing struggle

  • Robson Coutinho-Silva
  • Gladys Corrêa
  • Ali Abdul Sater
  • David M. Ojcius


The purinergic receptor, P2X7, has recently emerged as an important component of the innate immune response against microbial infections. Ligation of P2X7 by ATP can stimulate inflammasome activation and secretion of proinflammatory cytokines, but it can also lead directly to killing of intracellular pathogens in infected macrophages and epithelial cells. Thus, while some intracellular pathogens evade host defense responses by modulating with membrane trafficking or cell signaling in the infected cells, the host cells have also developed mechanisms for inhibiting infection. This review will focus on the effects of P2X7 on control of infection by intracellular pathogens, microbial virulence factors that interfere with P2X7 activity, and recent evidence linking polymorphisms in human P2X7 with susceptibility to infection.


Apoptosis PLD Ecto-ATPases Purinergic receptors ATP SNPs 



nucleoside diphosphate kinase


nucleoside triphosphatase


phospholipase D


reactive oxygen species


single nucleotide polymorphisms


  1. 1.
    Denkers EY, Butcher BA (2005) Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol 21(1):35–41PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso A, Garcia-del Portillo F (2004) Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol 7(3):181–191PubMedGoogle Scholar
  3. 3.
    Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4):767–782PubMedCrossRefGoogle Scholar
  4. 4.
    Stafford JL, Neumann NF, Belosevic M (2002) Macrophage-mediated innate host defense against protozoan parasites. Crit Rev Microbiol 28(3):187–248PubMedCrossRefGoogle Scholar
  5. 5.
    Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(11):1041–1047PubMedCrossRefGoogle Scholar
  6. 6.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826PubMedCrossRefGoogle Scholar
  7. 7.
    Bhavsar AP, Guttman JA, Finlay BB (2007) Manipulation of host-cell pathways by bacterial pathogens. Nature 449(7164):827–834PubMedCrossRefGoogle Scholar
  8. 8.
    Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8(8):622–632PubMedCrossRefGoogle Scholar
  9. 9.
    Brumell JH, Grinstein S (2003) Role of lipid-mediated signal transduction in bacterial internalization. Cell Microbiol 5(5):287–297PubMedCrossRefGoogle Scholar
  10. 10.
    Deretic V, Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31(6):1603–1609PubMedCrossRefGoogle Scholar
  11. 11.
    Wyrick PB (2000) Intracellular survival by Chlamydia. Cell Microbiol 2(4):275–282PubMedCrossRefGoogle Scholar
  12. 12.
    Sibley LD (2003) Toxoplasma gondii: perfecting an intracellular life style. Traffic 4(9):581–586PubMedCrossRefGoogle Scholar
  13. 13.
    Mordue DG, Hakansson S, Niesman I, Sibley LD (1999) Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol 92(2):87–99PubMedCrossRefGoogle Scholar
  14. 14.
    Lamothe J, Huynh KK, Grinstein S, Valvano MA (2007) Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9(1):40–53PubMedCrossRefGoogle Scholar
  15. 15.
    Kusner DJ, Adams J (2000) ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164(1):379–388PubMedGoogle Scholar
  16. 16.
    Stober CB, Lammas DA, Li CM, Kumararatne DS, Lightman SL, McArdle CA (2001) ATP-mediated killing of Mycobacterium bovis bacille Calmette-Guérin within human macrophages Is calcium dependent and associated with the acidification of mycobacteria-containing phagosomes. J Immunol 166(10):6276–6286PubMedGoogle Scholar
  17. 17.
    Coutinho-Silva R, Stahl L, Raymond M-N, Jungas T, Verbeke P, Burnstock G, Darville T, Ojcius DM (2003) Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19:403–412PubMedCrossRefGoogle Scholar
  18. 18.
    Darville T, Welter-Stahl L, Cruz C, Sater AA, Andrews CW Jr, Ojcius DM (2007) Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice. J Immunol 179(6):3707–3714PubMedGoogle Scholar
  19. 19.
    Coutinho-Silva R, da Cruz CM, Persechini PM, Ojcius DM (2007) The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 3:83–90PubMedCrossRefGoogle Scholar
  20. 20.
    Gamaley IA, Klyubin IV (1999) Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cytol 188:203–255PubMedCrossRefGoogle Scholar
  21. 21.
    Rhee SG (1999) Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med 31(2):53–59PubMedGoogle Scholar
  22. 22.
    Dichmann S, Idzko M, Zimpfer U, Hofmann C, Ferrari D, Luttmann W, Virchow C, Di Virgilio F, Norgauer J (2000) Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca(++) mobilization and actin reorganization in human eosinophils. Blood 95(3):973–978PubMedGoogle Scholar
  23. 23.
    Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow C, Norgauer J, Chiozzi P, Di Virgilio F, Luttmann W (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486(3):217–224PubMedCrossRefGoogle Scholar
  24. 24.
    Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X(7) nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166(11):6754–6763PubMedGoogle Scholar
  25. 25.
    Guerra AN, Gavala ML, Chung HS, Bertics PJ (2007) Nucleotide receptor signalling and the generation of reactive oxygen species. Purinergic Signal 3:39–51PubMedCrossRefGoogle Scholar
  26. 26.
    Pfeiffer ZA, Guerra AN, Hill LM, Gavala ML, Prabhu U, Aga M, Hall DJ, Bertics PJ (2007) Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation. Free Radic Biol Med 42(10):1506–1516PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrari D, Wesselborg S, Bauer MKA, Schulze-Osthoff K (1997) Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol 139(7):1635–1643PubMedCrossRefGoogle Scholar
  28. 28.
    Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282(5):2871–2879PubMedCrossRefGoogle Scholar
  29. 29.
    Noguchi T, Ishii K, Fukutomi H, Naguro I, Matsuzawa A, Takeda K, Ichijo H (2008) Requirement of reactive oxygen species-dependent activation of ASK1-p38 MAPK pathway for extracellular ATP-induced apoptosis in macrophage. J Biol Chem 283(12):7657–7665PubMedCrossRefGoogle Scholar
  30. 30.
    Heussler VT, Kuenzi P, Rottenberg S (2001) Inhibition of apoptosis by intracellular protozoan parasites. Int J Parasitol 31(11):1166–1176PubMedCrossRefGoogle Scholar
  31. 31.
    Leiriao P, Rodrigues CD, Albuquerque SS, Mota MM (2004) Survival of protozoan intracellular parasites in host cells. EMBO Rep 5(12):1142–1147PubMedCrossRefGoogle Scholar
  32. 32.
    Luder CG, Gross U, Lopes MF (2001) Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 17(10):480–486PubMedCrossRefGoogle Scholar
  33. 33.
    Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2(10):802–808PubMedCrossRefGoogle Scholar
  34. 34.
    Ying S, Pettengill M, Ojcius DM, Hacker G (2007) Host-cell survival and death during Chlamydia infection. Curr Immunol Rev 3(1):31–40PubMedCrossRefGoogle Scholar
  35. 35.
    Osborn JE (1996) Drug use and behavior change. Am J Public Health 86(12):1698–1699PubMedCrossRefGoogle Scholar
  36. 36.
    Evan G, Littlewood T (1998) A matter of life and cell death. Science 281(5381):1317–1322PubMedCrossRefGoogle Scholar
  37. 37.
    Wyllie A (1997) Apoptosis. Clues in the p53 murder mystery. Nature 389(6648):237–238PubMedCrossRefGoogle Scholar
  38. 38.
    Heussler VT, Machado J Jr., Fernandez PC, Botteron C, Chen CG, Pearse MJ, Dobbelaere DA (1999) The intracellular parasite Theileria parva protects infected T cells from apoptosis. Proc Natl Acad Sci U S A 96(13):7312–7317PubMedCrossRefGoogle Scholar
  39. 39.
    Heussler VT, Rottenberg S, Schwab R, Kuenzi P, Fernandez PC, McKellar S, Shiels B, Chen ZJ, Orth K, Wallach D, Dobbelaere DA (2002) Hijacking of host cell IKK signalosomes by the transforming parasite Theileria. Science 298(5595):1033–1036PubMedCrossRefGoogle Scholar
  40. 40.
    Kim JY, Ahn MH, Jun HS, Jung JW, Ryu JS, Min DY (2006) Toxoplasma gondii inhibits apoptosis in infected cells by caspase inactivation and NF-kappaB activation. Yonsei Med J 47(6):862–869PubMedCrossRefGoogle Scholar
  41. 41.
    Clifton DR, Goss RA, Sahni SK, van Antwerp D, Baggs RB, Marder VJ, Silverman DJ, Sporn LA (1998) NF-kappa B-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 95(8):4646–4651PubMedCrossRefGoogle Scholar
  42. 42.
    Clark RK, Kuhn RE (1999) Trypanosoma cruzi does not induce apoptosis in murine fibroblasts. Parasitology 118(Pt 2):167–175PubMedCrossRefGoogle Scholar
  43. 43.
    Moore KJ, Matlashewski G (1994) Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol 152(6):2930–2937PubMedGoogle Scholar
  44. 44.
    Leiriao P, Albuquerque SS, Corso S, van Gemert GJ, Sauerwein RW, Rodriguez A, Giordano S, Mota MM (2005) HGF/MET signalling protects Plasmodium-infected host cells from apoptosis. Cell Microbiol 7(4):603–609PubMedCrossRefGoogle Scholar
  45. 45.
    Coutinho-Silva R, Perfettini J-L, Persechini PM, Dautry-Varsat A, Ojcius DM (2001) Modulation of P2Z/P2X7 receptor activity in macrophages infected with Chlamydia psittaci. Am J Physiol Cell Physiol 280:C81–C89PubMedGoogle Scholar
  46. 46.
    Coutinho-Silva R, Stahl L, Cheung KK, de Campos NE, de Oliveira SC, Ojcius DM, Burnstock G (2005) P2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation. Am J Physiol Gastrointest Liver Physiol 288(5):G1024–G1035PubMedCrossRefGoogle Scholar
  47. 47.
    Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433–444PubMedCrossRefGoogle Scholar
  48. 48.
    Molloy A, Laochumroonvorapong P, Kaplan G (1994) Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin. J Exp Med 180:1499–1509PubMedCrossRefGoogle Scholar
  49. 49.
    Yilmaz O, Yao L, Maeda K, Rose TM, Lewis EL, Duman M, Lamont RJ, Ojcius DM (2008) ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 10(4):863–875PubMedCrossRefGoogle Scholar
  50. 50.
    Zaborina O, Li X, Cheng G, Kapatral V, Chakrabarty AM (1999) Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors? Mol Microbiol 31(5):1333–1343PubMedCrossRefGoogle Scholar
  51. 51.
    Kolli BK, Kostal J, Zaborina O, Chakrabarty AM, Chang KP (2008) Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 158(2):163–175PubMedCrossRefGoogle Scholar
  52. 52.
    Lascu L, Giartosio A, Ransac S, Erent M (2000) Quaternary structure of nucleoside diphosphate kinases. J Bioenerg Biomembr 32(3):227–236PubMedCrossRefGoogle Scholar
  53. 53.
    Shankar S, Hershberger CD, Chakrabarty AM (1997) The nucleoside diphosphate kinase of Mycobacterium smegmatis: identification of proteins that modulate specificity of nucleoside triphosphate synthesis by the enzyme. Mol Microbiol 24(3):477–487PubMedCrossRefGoogle Scholar
  54. 54.
    Chen Y, Morera S, Mocan J, Lascu I, Janin J (2002) X-ray structure of Mycobacterium tuberculosis nucleoside diphosphate kinase. Proteins 47(4):556–557PubMedCrossRefGoogle Scholar
  55. 55.
    Tiwari S, Kishan KV, Chakrabarti T, Chakraborti PK (2004) Amino acid residues involved in autophosphorylation and phosphotransfer activities are distinct in nucleoside diphosphate kinase from Mycobacterium tuberculosis. J Biol Chem 279(42):43595–43603PubMedCrossRefGoogle Scholar
  56. 56.
    McLaughlin J, Muller M (1981) A calcium regulated adenosine triphosphatase in Entamoeba histolytica. Mol Biochem Parasitol 3(6):369–379PubMedCrossRefGoogle Scholar
  57. 57.
    Takeuchi T, Kobayashi S, Masuda M, Tanabe M, Miura S, Fujiwara T (1981) Entamoeba histolytica: localization and characterization of ca2+-dependent nucleotidases. Int J Parasitol 11(3):209–215PubMedCrossRefGoogle Scholar
  58. 58.
    Asai T, Kim TJ, Kobayashi M, Kojima S (1987) Detection of nucleoside triphosphate hydrolase as a circulating antigen in sera of mice infected with Toxoplasma gondii. Infect Immun 55(5):1332–1335PubMedGoogle Scholar
  59. 59.
    Nakaar V, Beckers CJ, Polotsky V, Joiner KA (1998) Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase. Mol Biochem Parasitol 97(1–2):209–220PubMedCrossRefGoogle Scholar
  60. 60.
    Kikuchi T, Nagata T, Furuta T (2001) Production and characterization of a monoclonal antibody against nucleoside triphosphate hydrolase from Toxoplasma gondii. J Eukaryot Microbiol Suppl:195S-196SGoogle Scholar
  61. 61.
    Johnson M, Broady K, Angelici MC, Johnson A (2003) The relationship between nucleoside triphosphate hydrolase (NTPase) isoform and Toxoplasma strain virulence in rat and human toxoplasmosis. Microbes Infect 5(9):797–806PubMedCrossRefGoogle Scholar
  62. 62.
    Asai T, Howe DK, Nakajima K, Nozaki T, Takeuchi T, Sibley LD (1998) Neospora caninum: tachyzoites express a potent type-I nucleoside triphosphate hydrolase. Exp Parasitol 90(3):277–285PubMedCrossRefGoogle Scholar
  63. 63.
    Meyer-Fernandes JR, Saad-Nehme J, Peres-Sampaio CE, Belmont-Firpo R, Bisaggio DF, Do Couto LC, Fonseca De Souza AL, Lopes AH, Souto-Padron T (2004) A Mg-dependent ecto-ATPase is increased in the infective stages of Trypanosoma cruzi. Parasitol Res 93(1):41–50PubMedCrossRefGoogle Scholar
  64. 64.
    Fonseca FV, Fonseca De Souza AL, Mariano AC, Entringer PF, Gondim KC, Meyer-Fernandes JR (2006) Trypanosoma rangeli: characterization of a Mg-dependent ecto ATP-diphosphohydrolase activity. Exp Parasitol 112(2):76–84PubMedCrossRefGoogle Scholar
  65. 65.
    de Souza LM, Thomaz R, Fonseca FV, Panizzutti R, Vercesi AE, Meyer-Fernandes JR (2007) Trypanosoma brucei brucei: biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 115(4):315–323CrossRefGoogle Scholar
  66. 66.
    Berredo-Pinho M, Peres-Sampaio CE, Chrispim PP, Belmont-Firpo R, Lemos AP, Martiny A, Vannier-Santos MA, Meyer-Fernandes JR (2001) A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391(1):16–24PubMedCrossRefGoogle Scholar
  67. 67.
    Meyer-Fernandes JR, Dutra PM, Rodrigues CO, Saad-Nehme J, Lopes AH (1997) Mg-dependent ecto-ATPase activity in Leishmania tropica. Arch Biochem Biophys 341(1):40–46PubMedCrossRefGoogle Scholar
  68. 68.
    Fernando SL, Britton WJ (2006) Genetic susceptibility to mycobacterial disease in humans. Immunol Cell Biol 84(2):125–137PubMedCrossRefGoogle Scholar
  69. 69.
    Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8(12):1229–1231PubMedGoogle Scholar
  70. 70.
    Young MT, Pelegrin P, Surprenant A (2006) Identification of Thr283 as a key determinant of P2X7 receptor function. Br J Pharmacol 149(3):261–268PubMedCrossRefGoogle Scholar
  71. 71.
    Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276(14):11135–11142PubMedCrossRefGoogle Scholar
  72. 72.
    Wiley JS, Dao-Ung LP, Gu BJ, Sluyter R, Shemon AN, Li C, Taper J, Gallo J, Manoharan A (2002) A loss-of-function polymorphic mutation in the cytolytic P2X7 receptor gene and chronic lymphocytic leukaemia: a molecular study. Lancet 359(9312):1114–1119PubMedCrossRefGoogle Scholar
  73. 73.
    Dao-Ung LP, Fuller SJ, Sluyter R, Skarratt KK, Thunberg U, Tobin G, Byth K, Ban M, Rosenquist E, Stewart GJ, Wiley JS (2004) Association of the 1513C polymorphism in the P2X7 gene with familial forms of chronic lymphocytic leukaemia. Br J Haematol 125(6):815–817PubMedCrossRefGoogle Scholar
  74. 74.
    Thunberg U, Tobin G, Johnson A, Soderberg O, Padyukov L, Hultdin M, Klareskog L, Enblad G, Sundstrom C, Roos G, Rosenquist R (2002) Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukaemia. Lancet 360(9349):1935–1939PubMedCrossRefGoogle Scholar
  75. 75.
    Cabrini G, Falzoni S, Forchap SL, Pellegatti P, Balboni A, Agostini P, Cuneo A, Castoldi G, Baricordi OR, Di Virgilio F (2005) A His-155 to Tyr polymorphism confers gain-of-function to the human P2X7 receptor of human leukemic lymphocytes. J Immunol 175(1):82–89PubMedGoogle Scholar
  76. 76.
    Elliott JI, McVey JH, Higgins CF (2005) The P2X7 receptor is a candidate product of murine and human lupus susceptibility loci: a hypothesis and comparison of murine allelic products. Arthritis Res Ther 7(3):R468–R475PubMedCrossRefGoogle Scholar
  77. 77.
    Haas SL, Ruether A, Singer MV, Schreiber S, Bocker U (2007) Functional P2X7 receptor polymorphisms (His155Tyr, Arg307Gln, Glu496Ala) in patients with Crohn’s disease. Scand J Immunol 65(2):166–170PubMedCrossRefGoogle Scholar
  78. 78.
    Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278(15):13309–13317PubMedCrossRefGoogle Scholar
  79. 79.
    Barden N, Harvey M, Gagne B, Shink E, Tremblay M, Raymond C, Labbe M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Muller-Myhsok B (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141B(4):374–382PubMedCrossRefGoogle Scholar
  80. 80.
    Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P (2006) COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12PubMedCrossRefGoogle Scholar
  81. 81.
    Elliott JI, Higgins CF (2004) Major histocompatibility complex class I shedding and programmed cell death stimulated through the proinflammatory P2X7 receptor: a candidate susceptibility gene for NOD diabetes. Diabetes 53(8):2012–2017PubMedCrossRefGoogle Scholar
  82. 82.
    Skarratt KK, Fuller SJ, Sluyter R, Dao-Ung LP, Gu BJ, Wiley JS (2005) A 5′ intronic splice site polymorphism leads to a null allele of the P2X7 gene in 1–2% of the Caucasian population. FEBS Lett 579(12):2675–2678PubMedCrossRefGoogle Scholar
  83. 83.
    Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ, Barden JA, Clarke LA, Petrou S, Wiley JS (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279(30):31287–31295PubMedCrossRefGoogle Scholar
  84. 84.
    Li CM, Campbell SJ, Kumararatne DS, Bellamy R, Ruwende C, McAdam KP, Hill AV, Lammas DA (2002) Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J Infect Dis 186(10):1458–1462PubMedCrossRefGoogle Scholar
  85. 85.
    Petrilli V, Dostert C, Muruve DA, Tschopp J (2007) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19(6):615–622PubMedCrossRefGoogle Scholar
  86. 86.
    Di Virgilio F (2007) Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol Sci 28(9):465–472PubMedCrossRefGoogle Scholar
  87. 87.
    Saunders BM, Fernando SL, Sluyter R, Britton WJ, Wiley JS (2003) A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 171(10):5442–5446PubMedGoogle Scholar
  88. 88.
    Sluyter R, Dalitz JG, Wiley JS (2004) P2X7 receptor polymorphism impairs extracellular adenosine 5′-triphosphate-induced interleukin-18 release from human monocytes. Genes Immun 5(7):588–591PubMedCrossRefGoogle Scholar
  89. 89.
    Sluyter R, Shemon AN, Wiley JS (2004) Glu496 to Ala polymorphism in the P2X7 receptor impairs ATP-induced IL-1 beta release from human monocytes. J Immunol 172(6):3399–3405PubMedGoogle Scholar
  90. 90.
    Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Wiley JS, Britton WJ (2005) Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J Infect Dis 192(1):149–155PubMedCrossRefGoogle Scholar
  91. 91.
    Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrou S, Wiley JS (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281(4):2079–2086PubMedCrossRefGoogle Scholar
  92. 92.
    Nino-Moreno P, Portales-Perez D, Hernandez-Castro B, Portales-Cervantes L, Flores-Meraz V, Baranda L, Gomez-Gomez A, Acuna-Alonzo V, Granados J, Gonzalez-Amaro R (2007) P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin Exp Immunol 148(3):469–477PubMedGoogle Scholar
  93. 93.
    Wiley JS, Fernando S, Skarratt K, Saunders B, Sluyter R, Gu B, Fuller S, Shemon A, Dao-Ung P, Georgiou J, Britton W (2006) Polymorphisms in the P2X7 receptor and their clinical associations. Purinergic Signal 2(2):29–30Google Scholar
  94. 94.
    Fuller SJ, Lees M, Murray H, Sluyter R, Gu B, Boulter N, Skarratt K, Smith NC, Wiley JS (2006) A role for the P2X7 receptor in control of Toxoplasma gondii infection. Purinergic Signal 2(2):82Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Robson Coutinho-Silva
    • 1
    • 3
  • Gladys Corrêa
    • 1
  • Ali Abdul Sater
    • 2
  • David M. Ojcius
    • 2
  1. 1.Immunobiology Program, Biophysics Institute Carlos Chagas FilhoFederal University of Rio de JaneiroRJBrazil
  2. 2.School of Natural SciencesUniversity of CaliforniaMercedUSA
  3. 3.Instituto de Biofísica Carlos Chagas Filho – UFRJCidade UniversitáriaIlha do FundãoBrazil

Personalised recommendations