Advertisement

Purinergic Signalling

, 5:277 | Cite as

Mouse Leydig cells express multiple P2X receptor subunits

  • Ligia Subitoni Antonio
  • Roberta Ribeiro Costa
  • Marcelo Damário Gomes
  • Wamberto Antonio VarandaEmail author
Original Article

Abstract

ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X2. In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X2, P2X4, P2X6, and P2X7 subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 μM ivermectin induced an increase (131.2 ± 5.9%) and 3 μM ivermectin a decrease (64.2 ± 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X4 subunits. P2X7 receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X2/4/6, is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X2 subunit.

Keywords

P2X receptors ATP Leydig cells Western blot Immunofluorescence Electrophysiology 

Notes

Acknowledgments

We thank Mr. José Fernando Aguiar for excellent technical assistance and Ana Leticia G.C. Maragno for help with the Western blots. Confocal microscopy was performed in the “Laboratório de Microscopia Confocal da Faculdade de Medicina de Ribeirão Preto—USP”. This work was supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP # 06/50954-7). LSA had a fellowship from CNPq.

References

  1. 1.
    Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G (2004) Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J Mol Biol 342:333–343 doi: 10.1016/j.jmb.2004.06.092 PubMedCrossRefGoogle Scholar
  2. 2.
    Bo X, Zhang Y, Nassar M, Burnstock G, Schoepfer R (1995) A P2X purinoceptor cDNA conferring a novel pharmacological profile. FEBS Lett 375:129–133 doi: 10.1016/0014-5793(95)01203-Q PubMedCrossRefGoogle Scholar
  3. 3.
    Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channel defined by ionotropic ATP receptor. Nature 371:519–523 doi: 10.1038/371519a0 PubMedCrossRefGoogle Scholar
  4. 4.
    Brône B, Moechars D, Marrannes R, Mercken M, Meert T (2007) P2X currents in peritoneal macrophages of wild type and P2X4 −/− mice. Immunol Lett 113:83–89 doi: 10.1016/j.imlet.2007.07.015 PubMedCrossRefGoogle Scholar
  5. 5.
    Brown SG, Townsend-nicholson A, Jacobson KA, Burnstock G, King BF (2002) Heteromultimeric P2X1/2 receptors show a novel sensitivity to extracellular pH. J Pharmacol Exp Ther 300:673–680 doi: 10.1124/jpet.300.2.673 PubMedCrossRefGoogle Scholar
  6. 6.
    Carnio EC, Varanda WA (1995) Calcium-activated potassium channels are involved in the response of mouse Leydig cells to human chorionic gonadotropin. Braz J Med Biol Res 28:813–824PubMedGoogle Scholar
  7. 7.
    Cheewatrakoolpong B, Gilchrest H, Anthes JC, Greenfeder S (2005) Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem Biophys Res Commun 332(1):17–27 doi: 10.1016/j.bbrc.2005.04.087 PubMedCrossRefGoogle Scholar
  8. 8.
    Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377(6548):428–431 doi: 10.1038/377428a0 PubMedCrossRefGoogle Scholar
  9. 9.
    Chen CC, Parker MS, Barnes AP, Deininger P, Bobbin RP (2000) Functional expression of three P2X(2) receptor splice variants from guinea pig cochlea. J Neurophysiol 83:1502–1509PubMedGoogle Scholar
  10. 10.
    Chessel IP, Michel AD, Humphrey PPA (1998) Effects of antagonists at the human recombinant P2X7 receptor. Br J Pharmacol 124:1314–1320 doi: 10.1038/sj.bjp.0701958 CrossRefGoogle Scholar
  11. 11.
    Coutinho-Silva R, Persechini PM, Bissagio RD, Perfettini JL, Neto AC, Kanellopoulos JM, Motta-ly I, Dautry-varsat A, Ojcius DM (1999) P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 276(5 Pt 1):C1139–C1147PubMedGoogle Scholar
  12. 12.
    Dhulipala PD, Wang YX, Kotlikoff MI (1998) The human P2X4 receptor gene is alternatively spliced. Gene 207:259–266 doi: 10.1016/S0378-1119(97)00647-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G (2006) P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J Biol Chem 281:39561–39572 doi: 10.1074/jbc.M606113200 PubMedCrossRefGoogle Scholar
  14. 14.
    Egan TM, Haines WR, Voigt MM (1998) A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J Neurosci 18:2350–2359PubMedGoogle Scholar
  15. 15.
    Evans RJ, Lewis C, Buell G, Valera S, North RA, Surprenant A (1995) Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol Pharmacol 48:178–183PubMedGoogle Scholar
  16. 16.
    Filippini A, Riccioli A, de Cesaris P, Paniccia R, Teti A, Stefanini M, Conti M, Ziparo E (1994) Activation of inositol phospholipid turnover and calcium signaling in rat Sertoli cells by P2-purinergic receptors: modulation of follicle-stimulating hormone responses. Endocrinology 134(3):1537–1545 doi: 10.1210/en.134.3.1537 PubMedCrossRefGoogle Scholar
  17. 17.
    Foresta C, Rossato M, Nogara A, Gottardello F, Bordon P, di Virgilio F (1996) Role of P2-purinergic receptors in rat Leydig cell steroidogenesis. Biochem J 320:499–504PubMedGoogle Scholar
  18. 18.
    Garcia–Guzman M, Soto F, Laube B, Stühmer W (1996) Molecular cloning and functional expression of a novel rat heart P2X purinoceptor. FEBS Lett 388:123–127 doi: 10.1016/0014-5793(96)00499-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456 doi: 10.1124/mol.107.035980 PubMedCrossRefGoogle Scholar
  20. 20.
    Hardy LA, Harvey IJ, Chambers P, Gillespie JI (2000) A putative alternatively spliced variant of the P2X(1) purinoreceptor in human bladder. Exp Physiol 85:461–463 doi: 10.1017/S0958067000003572 PubMedCrossRefGoogle Scholar
  21. 21.
    Hibell AD, Kidd EJ, Chessell IP, Humphrey PPA, Michel AD (2000) Apparent species differences in the kinetic properties of P2X7 receptors. Br J Pharmacol 130:167–173 doi: 10.1038/sj.bjp.0703302 PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang LH, Rassendren F, Spelta V, Surprenant A, North RA (2001) Amino acid residues involved in gating identified in the first membrane-spanning domain of the rat P2X2 receptor. J Biol Chem 276:14902–14908 doi: 10.1074/jbc.M011327200 PubMedCrossRefGoogle Scholar
  23. 23.
    Jones CA, Vial C, Sellers LA, Humphrey PPA, Evans RJ, Chessell IP (2004) Functional regulation of P2X6 receptors by N-linked glycosylation: identification of a novel αβ-methylene ATP-sensitive phenotype. Mol Pharmacol 65:979–985 doi: 10.1124/mol.65.4.979 PubMedCrossRefGoogle Scholar
  24. 24.
    Kawa K (1987) Existence of calcium channels and intercellular couplings in the testosterone-secreting cells of the mouse. J Physiol 393:647–666PubMedGoogle Scholar
  25. 25.
    Khakh BS, Bao XR, Labarca C, Lester HA (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2(4):322–330 doi: 10.1038/7233 PubMedCrossRefGoogle Scholar
  26. 26.
    King BF, Ziganshina LE, Pintor J, Burnstock G (1996) Full sensitivity of P2X2 purinoceptor to ATP revealed by changing extracellular pH. Br J Pharmacol 117(7):1371–1373PubMedGoogle Scholar
  27. 27.
    King BF, Townsend-Nicholson A, Wildman SS, Thomas T, Spyer KM, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877PubMedGoogle Scholar
  28. 28.
    Klinefelter GR, Hall PF, Ewing LL (1987) Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multistep procedure. Biol Reprod 36:769–783 doi: 10.1095/biolreprod36.3.769 PubMedCrossRefGoogle Scholar
  29. 29.
    Ko WH, Au CL, Yip CY (2003) Multiple purinergic receptors lead to intracellular calcium increases in cultured rat Sertoli cells. Life Sci 72:1519–1535 doi: 10.1016/S0024-3205(02)02410-4 PubMedCrossRefGoogle Scholar
  30. 30.
    Le KT, Babinski K, Séguéla P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159PubMedGoogle Scholar
  31. 31.
    Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A (1995) Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–435 doi: 10.1038/377432a0 PubMedCrossRefGoogle Scholar
  32. 32.
    Loir M (1999) Spermatogonia of rainbow trout: III. In vitro study of the proliferative response to extracellular ATP and adenosine. Mol Reprod Dev 53(4):443–450 doi: 10.1002/(SICI)1098-2795(199908)53:4<443::AID-MRD10>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  33. 33.
    Mackenzie AB, Surprenant A, North RA (1999) Functional and molecular diversity of purinergic ion channel receptors. Ann N Y Acad Sci 868:716–729 doi: 10.1111/j.1749-6632.1999.tb11351.x PubMedCrossRefGoogle Scholar
  34. 34.
    Manna PR, Kero J, Tena-Sempere M, Pakarinen P, Stocco DM, Huhtaniemi IT (2001) Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function. Endocrinology 142(1):319–331 doi: 10.1210/en.142.1.319 PubMedCrossRefGoogle Scholar
  35. 35.
    Manna PR, Wang XJ, Stocco DM (2003) Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68(14):1125–1134 doi: 10.1016/j.steroids.2003.07.009 PubMedCrossRefGoogle Scholar
  36. 36.
    Mateo J, Garcia-Lecea M, Miras-Portugal MT, Castro E (1998) Ca2+ signals mediated by P2X-type purinoceptors in cultured cerebellar Purkinje cells. J Neurosci 18:1704–1712PubMedGoogle Scholar
  37. 37.
    Miller WL (1988) Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318PubMedCrossRefGoogle Scholar
  38. 38.
    Nicke A, Kerschensteiner D, Soto F (2005) Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits. J Neurochem 92:925–933 doi: 10.1111/j.1471-4159.2004.02939.x PubMedCrossRefGoogle Scholar
  39. 39.
    Nishi H, Kato F, Masaki E, Kawamura M (2002) ADP-sensitive purinoceptors induce steroidogenesis via adenylyl cyclase activation in bovine adrenocortical fasciculata cells. Br J Pharmacol 137(2):177–184 doi: 10.1038/sj.bjp.0704847 PubMedCrossRefGoogle Scholar
  40. 40.
    Perez-Armendariz EM, Nadal A, Fuentes E, Spray DC (1996) Adenosine 5′-triphosphate (ATP) receptors induce intracellular calcium changes in mouse Leydig cells. Endocrine 4:239–247 doi: 10.1007/BF02738690 CrossRefGoogle Scholar
  41. 41.
    Poletto-Chaves LA, Pontelli EP, Varanda WA (2006) P2X receptors in mouse Leydig cells. Am J Physiol Cell Physiol 290:1009–1017 doi: 10.1152/ajpcell.00506.2005 CrossRefGoogle Scholar
  42. 42.
    Poletto-Chaves LA, Varanda WA (2008) Volume-activated chloride channels in mice Leydig cells. Pflugers Arch. doi: 10.1007/s00424-008-0525-2
  43. 43.
    Priel A, Silberberg SD (2004) Mechanism of ivermectin facilitation of human P2X4 receptor channels. J Gen Physiol 123:281–293 doi: 10.1085/jgp.200308986 PubMedCrossRefGoogle Scholar
  44. 44.
    Schumacher M, Schafer G, Holstein AF, Hilz H (1978) Rapid isolation of mouse Leydig cells by centrifugation in Percoll density gradients with complete retention of morphological and biochemical integrity. FEBS Lett 91:333–338 doi: 10.1016/0014-5793(78)81204-6 PubMedCrossRefGoogle Scholar
  45. 45.
    Stoop R, Surprenant A, North RA (1997) Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J Neurophysiol 78:1837–1840PubMedGoogle Scholar
  46. 46.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor pf extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738 doi: 10.1126/science.272.5262.735 PubMedCrossRefGoogle Scholar
  47. 47.
    Tai CJ, Kang SK, Leung PC (2001) Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C. J Clin Endocrinol Metab 86(2):773–777 doi: 10.1210/jc.86.2.773 PubMedCrossRefGoogle Scholar
  48. 48.
    Torres GE, Egan TM, Voigt MM (1998) Topological analysis of the ATP-gated ionotropic P2X2 receptor subunit. FEBS Lett 425:19–23 doi: 10.1016/S0014-5793(98)00179-3 PubMedCrossRefGoogle Scholar
  49. 49.
    Townsend-Nicholson A, King BF, Wildman SS, Burnstock G (1999) Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res 64:246–254 doi: 10.1016/S0169-328X(98)00328-3 PubMedCrossRefGoogle Scholar
  50. 50.
    Valera S, Hussy H, Evans RJ, Adami N, North RA, Surprenant A, Buell G (1994) A new class of ligand-gated ion channel defined by P2X receptor of extracellular ATP. Nature 371:516–519 doi: 10.1038/371516a0 PubMedCrossRefGoogle Scholar
  51. 51.
    Wildman SS, Brown SG, Rahman M, Noel CA, Churchill L, Burnstock G, Unwin RJ, King BF (2002) Sensitization by extracellular Ca2+ of rat P2X5 receptor and its pharmacological properties compared with rat P2X1. Mol Pharmacol 62:957–966 doi: 10.1124/mol.62.4.957 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ligia Subitoni Antonio
    • 1
  • Roberta Ribeiro Costa
    • 1
  • Marcelo Damário Gomes
    • 2
  • Wamberto Antonio Varanda
    • 1
    Email author
  1. 1.Department of Physiology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Department of Biochemistry and Immunology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations