Purinergic Signalling

, Volume 5, Issue 3, pp 269–272 | Cite as

An evolutionary history of P2X receptors

Review

Abstract

Adenosine triphosphate (ATP) is an ancient and fundamentally important biological molecule involved in both intracellular and extracellular activities. P2X ionotropic and P2Y metabotropic receptors have been cloned and characterised in mammals. ATP plays a central physiological role as a transmitter molecule in processes including the sensation of pain, taste, breathing and inflammation via the activation of P2X receptors. P2X receptors are structurally distinct from glutamate and Cys-loop/nicotinic receptors and form the third major class of ligand-gated ion channel. Yet, despite the importance of P2X receptors, both as physiological mediators and therapeutic targets, the evolutionary origins and phylogenicity of ATP signalling via P2X receptors remain unclear.

Keywords

ATP Evolution P2X P2Y Receptor 

Abbreviations

LGICs

Ligand-gated ion channels

ESTs

Expressed sequence tags

Notes

References

  1. 1.
    North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067PubMedGoogle Scholar
  2. 2.
    Murrell-Lagnado RD, Qureshi OS (2008) Assembly and trafficking of P2X purinergic receptors. Mol Membr Biol 25:321–331. doi: 10.1080/09687680802050385 PubMedCrossRefGoogle Scholar
  3. 3.
    Jasti J, Furukawa H, Gonzales EB et al (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323. doi: 10.1038/nature06163 PubMedCrossRefGoogle Scholar
  4. 4.
    Yazawa M, Ferrante C, Feng J et al (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448:78–82. doi: 10.1038/nature05928 PubMedCrossRefGoogle Scholar
  5. 5.
    Brake AJ, Wagenbach MJ, Julius D (1994) New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371:519–523. doi: 10.1038/371519a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Valera S, Hussy N, Evans RJ et al (1994) A new class of ligand-gated ion channel defined by P2X receptor for extra-cellular ATP. Nature 371:516–519. doi: 10.1038/371516a0 PubMedCrossRefGoogle Scholar
  7. 7.
    Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304. doi: 10.1016/S0074-7696(04)40002-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Trams EG (1981) On the evolution of neurochemical transmission. Differentiation 19:125–133. doi: 10.1111/j.1432-0436.1981.tb01140.x PubMedCrossRefGoogle Scholar
  9. 9.
    Eichinger L, Pachebat JA, Glockner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57. doi: 10.1038/nature03481 PubMedCrossRefGoogle Scholar
  10. 10.
    Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652. doi: 10.1073/pnas.0604795103 PubMedCrossRefGoogle Scholar
  11. 11.
    King N, Westbrook MJ, Young SL et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788. doi: 10.1038/nature06617 PubMedCrossRefGoogle Scholar
  12. 12.
    Srivastava M, Begovic E, Chapman J et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960. doi: 10.1038/nature07191 PubMedCrossRefGoogle Scholar
  13. 13.
    Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797. doi: 10.1152/physrev.00043.2006 PubMedCrossRefGoogle Scholar
  14. 14.
    Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39:204–242. doi: 10.1002/(SICI)1098-2299(199611/12)39:3/4<204::AID-DDR2>3.0.CO;2-V CrossRefGoogle Scholar
  15. 15.
    Agboh KC, Webb TE, Evans RJ et al (2004) Functional characterization of a P2X receptor from Schistosoma mansoni. J Biol Chem 279:41650–41657. doi: 10.1074/jbc.M408203200 PubMedCrossRefGoogle Scholar
  16. 16.
    Brockie PJ, Mellem JE, Hills T et al (2001) The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31:617–630. doi: 10.1016/S0896-6273(01)00394-4 PubMedCrossRefGoogle Scholar
  17. 17.
    Jones AK, Sattelle DB (2008) The cys-loop ligand-gated ion channel gene superfamily of the nematode, Caenorhabditis elegans. Invert Neurosci 8:41–47. doi: 10.1007/s10158-008-0068-4 PubMedCrossRefGoogle Scholar
  18. 18.
    Finger TE, Danilova V, Barrows J et al (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499. doi: 10.1126/science.1118435 PubMedCrossRefGoogle Scholar
  19. 19.
    Fountain SJ, Cao L, Young MT et al (2008) Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 283:15122–15126. doi: 10.1074/jbc.M801512200 PubMedCrossRefGoogle Scholar
  20. 20.
    Fountain SJ, Parkinson K, Young MT et al (2007) An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 448:200–203. doi: 10.1038/nature05926 PubMedCrossRefGoogle Scholar
  21. 21.
    Ludlow MJ, Traynor D, Fisher PR et al (2008) Purinergic-mediated Ca2+ influx in Dictyostelium discoideum. Cell Calcium 44:567–579. doi: 10.1016/j.ceca.2008.04.001 PubMedCrossRefGoogle Scholar
  22. 22.
    Kim SY, Sivaguru M, Stacey G (2006) Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. Plant Physiol 142:984–992. doi: 10.1104/pp.106.085670 PubMedCrossRefGoogle Scholar
  23. 23.
    Roux SJ, Steinebrunner I (2007) Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci 12:522–527. doi: 10.1016/j.tplants.2007.09.003 PubMedCrossRefGoogle Scholar
  24. 24.
    Chen GQ, Cui C, Mayer ML et al (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817–821. doi: 10.1038/990080 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Membrane & Systems Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  2. 2.Autonomic Neuroscience CentreRoyal Free and University College Medical SchoolLondonUK

Personalised recommendations