Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Verfahren zur Präferenzmessung – Eine Übersicht und Beurteilung existierender und möglicher neuer Self-Explicated-Verfahren

Zusammenfassung

Für Unternehmen ist eine Produktgestaltung, die die Bedürfnisse der Kunden trifft, von hoher Relevanz, um langfristig Umsatz und Ertrag zu sichern. Die Kenntnis der Kundenbedürfnisse, für die als Maß deren Präferenzen herangezogen werden können, spielt daher für Unternehmen eine wichtige Rolle. Self-Explicated-Verfahren sind neben Conjoint-Verfahren die am häufigsten angewendeten Verfahren zur Präferenzmessung. Erstaunlicherweise wurde sich von wissenschaftlicher Seite jedoch trotz der Relevanz von Self-Explicated-Verfahren zur Präferenzmessung nur wenig mit diesen beschäftigt. Aufbauend auf einer Darstellung und Beurteilung existierender und möglicher neuer Self-Explicated-Verfahren zeigt der Beitrag, dass bisher nur wenige Self-Explicated-Verfahren umgesetzt wurden und identifiziert viel versprechende neue Verfahren für die zukünftige Forschung. Neben gütebezogenen Kriterien werden Self-Explicated-Verfahren dabei auch anhand anwendungsorientierter Kriterien evaluiert und somit aufgezeigt, welche Verfahren sich insbesondere aus praktischer Sicht anbieten.

Abstract

It is essential for companies that offered products meet consumer preferences to ensure the corporate performance in the long term. Besides Conjoint Approaches, Self-Explicated-Approaches are the most common approaches to determine consumer preferences. Surprisingly, despite the relevance of Self-Explicated-Approaches existing research has mainly focused on decompositional preference measurement approaches. The article provides an overview of all existing Self-Explicated-Approaches and shows that only a few have been implemented so far and identifies most promising new Self-Explicated-Approaches for future research. Besides an evaluation of Self-Explicated-Approaches based on accuracy criteria we also take application-oriented criteria into account in order to illustrate most appropriate Self-Explicated-Approaches for business applications.

This is a preview of subscription content, log in to check access.

Literatur

  1. 1.

    Agarwal MK, Green PE (1991) Adaptive conjoint analysis versus self explicated models, some empirical results. Int J Res Market 8:141–146

  2. 2.

    Aggarwal P, Vaidyanathan R (2003) Eliciting online consumers’ preferences: conjoint vs self-explicated attribute-level measurements. J Market Manag 19:157–177

  3. 3.

    Akaah I, Korgaonkar PK (1983) An empirical comparison of the predictive validity of self-explicated, huber-hybrid, traditional conjoint and hybrid conjoint models. J Market Res 20:187–197

  4. 4.

    Alwin DF, Krosnick JA (1985) The measurement of values in surveys: A comparison of ratings and rankings. Pub Opin Q 49:535–552

  5. 5.

    Brockhoff K (1999) Produktpolitik. Lucius&Lucius, Stuttgart

  6. 6.

    Brown TC, Peterson RM, Broderson V, Ford V, Bell PA (2005) The judged seriousness of an environmental loss is a matter of what caused it. J Environ Psychol 25:13–21

  7. 7.

    Chrzan K, Golovashkina N (2006) An empirical test of six stated importance measures. Int J Market Res 48:717–740

  8. 8.

    Churchill GA, Iacobucci D (2002) Marketing research: methodological foundations. Mason, Ohio

  9. 9.

    Cohen S (2003) Maximum difference scaling: improved measures of importance and preference for segmentation. Proceedings of the 2003 Sawtooth Software Conference, San Diego, S. 61–74

  10. 10.

    Comrey AL (1950) A proposed method for absolute ratio scaling. Psychometrika 15:317–325

  11. 11.

    David HA (1988) The method of paired comparisons. Charles Griffin, London

  12. 12.

    Dorsch MJ, Teas RK (1992) A test of the convergent validity of self-explicated and decompositional conjoint measurement. J Acad Market Sci 20:37–48

  13. 13.

    Farsky M, Eggers F (2007) Golden -i-: Konzeption und empirische Validitätsprüfung eines neuen Instrumentes zur Messung von Markenimages. Market Z Forsch Praxis 29:105–118

  14. 14.

    Finn A, Louviere JJ (1992) Determining the appropriate response to evidence of public concern: The case of food safety. J Pub Policy Market 11:12–25

  15. 15.

    Fishbein M (1967) A behavior theory approach to the relations between beliefs and about an object and the attitude toward the object. Wiley, New York

  16. 16.

    Green PE (1984) Hybrid conjoint analysis: an expository review. J Market Res 21:155–159

  17. 17.

    Green PE, Goldberg S, Montemayor M (1981) A hybrid utility estimation model for conjoint analysis. J Market 45:33–41

  18. 18.

    Green PE, Goldberg SM, Wiley JW (1983) Cross-validation test of hybrid conjoint models. Adv Consum Res 10:147–150

  19. 19.

    Green PE, Helsen K (1989) Cross-validation assessment of alternatives to individual-level conjoint analysis. J Market Res 26:346–350

  20. 20.

    Green PE, Krieger AM (1993) Conjoint analysis with product positioning applications. In: Eliashberg J, Lilien G (Hrsg.) Handbook in operations research and marketing science, Volume 5, Marketing. North Holland, Amsterdam, S. 467–515

  21. 21.

    Green PE, Krieger AM (1996) Individualized hybrid models for conjoint analysis. Manag Sci 42:850–867

  22. 22.

    Green PE, Krieger AM, Agarwal MK (1993) A cross validation test of four models for quantifying multiattribute preferences. Market Lett 4(4):369–380

  23. 23.

    Green PE, Krieger AM, Bansal P (1988) Completely unacceptable levels in conjoint analysis: a cautionary note. J Market Res 25:293–300

  24. 24.

    Green PE, Srinivasan V (1978) Conjoint analysis in consumer research: issues and outlook. J Consum Res 5:103–123

  25. 25.

    Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new developments with implications for research and practise. J Market 54:3–19

  26. 26.

    Gutsche J (1995) Produktpräferenzanalyse: Ein modelltheoretisches und methodisches Konzept zur Marktsimulation mittels Präferenzerfassungsmodellen. Duncker & Humblot, Berlin

  27. 27.

    Hartmann A, Sattler H (2002) Commercial use of conjoint analysis in Germany, Austria, and Switzerland. Working Paper No. 006, University of Hamburg

  28. 28.

    Hartmann A, Sattler H (2004) Wie robust sind Methoden zur Präferenzmessung? Z betriebswirtsch Forsch (zfbf) 56:3–22

  29. 29.

    Heeler RM, Okechuku C, Reid S (1979) Attribute importance: contrasting measurements. J Market Res 16:60–86

  30. 30.

    Hensel-Börner S (2000) Validität computergestützter hybrider Conjoint-Analyse. Deutscher Universitätsverlag, Wiesbaden

  31. 31.

    Hensel-Börner S, Sattler H (2000) Ein empirischer Validitätsvergleich zwischen der Customized Computerized Conjoint Analysis (CCC) der Adaptive Conjoint Analysis (ACA) und Self-Explicated-Verfahren. Z Betriebswirtsch (ZfB) 70:705–727

  32. 32.

    Herrmann A, Schmidt-Gallas D, Huber F (2001) Adaptive conjoint analyse: understanding the methodology and assessing reliability and validity. In: Gustaffson A, Herrmann A, Huber F (Hrsg.) Conjoint measurement: methods and applications. Springer, Berlin, S. 305–329

  33. 33.

    Höpfl RT, Huber PH (1970) A study of self-explicated utility models. Behav Sci 15:408–414

  34. 34.

    Huber GP, Daneshgar R, Ford DL (1971) An empirical comparison of five utility models for predicting job preferences. Organ Behav Human Perform 6:267–282

  35. 35.

    Hughes D (1970) Distinguishing salience and valence. Attitude Research Workshop, University of Illinois

  36. 36.

    Jain AK, Acito F, Malhotra N, Mahajan V (1979) A comparison of the internal validity of alternative parameter estimation methods in decompositional multiattribute preference models. J Market Res 16:312–322

  37. 37.

    Kramer T (2007) The effect of measurement task transparency on preference construction and evaluation of personalized recommendations. J Market Res 44:224–233

  38. 38.

    Lehmann DR (1971) Television show preferences. J Market Res 8:47–55

  39. 39.

    Leigh TW, MacKay DB, Summers JO (1984) Reliability and validity of conjoint analysis and self-explicated weights: A comparison. J Market Res 21:456–462

  40. 40.

    Lodge M (1984) Magnitude scaling: quantitative measurement of opinions. Sage Publications, Beverley Hills

  41. 41.

    Louviere JJ, Islam T (2008) A comparison of importance weights and willingness-to-pay measures derived from choice-based conjoint, constant sum scales and best-worst scaling. J Bus Res 61:903–911

  42. 42.

    Malhotra NK (2006) Marketing research: an applied orientation. Prentice Hall, Upper Saddle River, New Jersey

  43. 43.

    Marder E (1997) The laws of choice. Free Press, New York

  44. 44.

    Myers JH (1999) Measuring customer satisfaction: hot buttons and other measurement issues. American Marketing Association, Chicago

  45. 45.

    Netzer O, Srinivasan S (2007) Adaptive self-explication of multi attribute preferences. Working Paper, Columbia University

  46. 46.

    Oppewal H, Klabbers M (2003) Compromising between the information completeness and task simplicity: A comparison of self-explicated, hierarchical information integration, and full-profile conjoint methods. Adv Consum Res 30:298–303

  47. 47.

    Orme B (2003) Scaling multiple items: monadic ratings vs. paired comparisons. Sawtooth Software Conference Proceedings, Sequim, S. 43–59

  48. 48.

    Park YH, Ding M, Rao V (2008) Eliciting preference for complex products: a web-based upgrading method. J Market Res 45:562–574

  49. 49.

    Pullman ME, Dodson KJ, Moore WL (1999) A comparison of conjoint methods when there are many attributes. Market Lett 10:125–138

  50. 50.

    Ray ML (1979) Introduction to the special section: measurement and marketing research – is this flirtation going to lead a romance? J Market Res 16:1–6

  51. 51.

    Ray ML, Sherrill PN (1973) Unobtrusive marketing research techniques. In: Britt SH (Hrsg.) Marketing manager’s handbook. Dartnell, Chicago, S. 317–330

  52. 52.

    Retzer J (2006) The century of bayes. Int J Market Res 48:49–60

  53. 53.

    Rosenberg MJ (1956) Cognitive structure and attitudinal affect. J Abnorm Soc Psychol 53:367–372

  54. 54.

    Sattler H (1991) Herkunfts- und Gütezeichen im Kaufentscheidungsprozeß. Die Conjoint-Analyse als Instrument der Bedeutungsmessung. M & P, Verl. für Wiss. und Forschung, Stuttgart

  55. 55.

    Sattler H (2006) Methoden zur Messung von Präferenzen für Innovationen. Z betriebswirtsch Forsch 54:154–176

  56. 56.

    Sattler H, Hensel-Boerner S (2000) A comparison of conjoint measurement with self-explicated approaches. In: Gustaffson A, Herrmann A, Huber F (Hrsg.) Conjoint measurement: methods and applications. Springer, Berlin, pp 121–133

  57. 57.

    Sawtooth Software I (2002a) ACA 5.0 Technical Paper, http://www.sawtoothsoftware.com/download/techpap/acatech.pdf, Stand: 12.11.2006

  58. 58.

    Sawtooth Software I (2002b) ACA user manual version 5, Sequim

  59. 59.

    Sawtooth Software I (2007a) The ACA, Web v6.0 Technical Paper, http://www.sawtoothsoftware.com/download/techpap/acatech.pdf, Stand: 21.12.2007

  60. 60.

    Sawtooth Software I (2007b) The MaxDiff, Web v6.0 Technical Paper, http://www.sawtoothsoftware.com/download/techpap/acatech.pdf, Stand: 21.12.2007

  61. 61.

    Schendel DE, Wilkie WL, McCann JM (1971) An experimental investigation of attribute importance. Proceedings of the Association for Consumer Research, S. 404–416

  62. 62.

    Skiera B (1999) Mengenbezogene Preisdifferenzierung bei Dienstleistungen. Deutscher Universitäts-Verlag, Wiesbaden

  63. 63.

    Srinivasan V (1988) A conjunctive-compensatory approach to the self-explication of multiattributed preferences. Decis Sci 19:295–305

  64. 64.

    Srinivasan V, Park CS (1997) Surprising robustness of the self-explicated approach to customer preference structure measurement. J Market Res 34:286–291

  65. 65.

    Srinivasan V, Wyner G (1989) CASEMAP: computer-assisted self-explication of multiattributed preferences. In: Henry W, Menasco M, Takada H (Hrsg.) New-product development and testing. Lexington Books, Lexington, pp 91–112

  66. 66.

    Stapleton LM, Edmonds M (2005) An exploration of the validity of the unbounded write-in-scale for inter-individual research. Int J Pub Opin Res 17:484–494

  67. 67.

    Stephenson W (1953) The study of behaviour: the Q-technique and its methodology. University of Chicago Press, Chicago

  68. 68.

    Tigert DJ (1966) An investigation of experimental techniques to determine the relative importance of various product attributes in the consumer decision-making process. Institute Paper No. 126, Purdue University

  69. 69.

    Torgerson WS (1958) Theory and method of scaling. John Wiley, New York

  70. 70.

    Voeth M (1999) 25 Jahre conjointanalytische Forschung in Deutschland. Z Betriebswirtsch Ergänzungsheft 2:153–176

  71. 71.

    Wilkie WL, Pessemier EA (1973) Issues in marketing’s use of multi-attribute attitude models. J Market Res 10:428–441

  72. 72.

    Wittink DR, Cattin P (1989) Commercial use of conjoint analysis: An update. J Market 53:91–96

  73. 73.

    Wittink DR, Vriens M, Burhenne W (1994) Commercial use of conjoint analysis in Europe: results and critical reflections. Int J Res Market 11:41–52

  74. 74.

    Wright P, Kriewall MA (1980) State-of-mind effects on the accuracy with which utility functions predict marketplace choice. J Market Res 17:277–293

Download references

Author information

Correspondence to Jochen Eckert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eckert, J., Schaaf, R. Verfahren zur Präferenzmessung – Eine Übersicht und Beurteilung existierender und möglicher neuer Self-Explicated-Verfahren . J Betriebswirtsch 59, 31–56 (2009). https://doi.org/10.1007/s11301-009-0046-x

Download citation

Schlagworte

  • Präferenzmessung
  • Self-Explicated-Verfahren
  • Wichtigkeitsmessung

Keywords

  • Preference measurement
  • Self-explicated-approaches
  • Importance measurement