Methoden zur Messung individueller Zahlungsbereitschaften: Ein Überblick zum State of the Art

State-of-the-Art-Artikel

Zusammenfassung

Werbeslogans wie z. B. ,,Geiz ist geil“ (Saturn), ,,Preise gut, alles gut“ (C&A) oder ,,Bei diesen Preisen muss man reisen“ (1-2-Fly) verdeutlichen, dass der Preis im Fokus der Marketingstrategie vieler Unternehmen steht. Die im Markt erzielten Preise haben einen wesentlichen Einfluss darauf, ob und in welchem Maße Unternehmen mit dem Verkauf ihrer Produkte Gewinne erzielen. Zur optimalen Gestaltung und Umsetzung preispolitischer Maßnahmen ist die Kenntnis der Zahlungsbereitschaft von Nachfragern essentiell. Der vorliegende Beitrag gibt einen Überblick über die wissenschaftlichen Erkenntnisse zur Messung von Zahlungsbereitschaften. Dazu werden die in der wissenschaftlichen Literatur vorgeschlagenen Ansätze zur Ermittlung von individuellen Zahlungsbereitschaften systematisiert, erläutert und ihre Eignung kritisch beurteilt. Der Beitrag zeigt damit, welche Methoden der Zahlungsbereitschaftsmessung zur Verfügung stehen und bietet Hilfestellung bei der Methodenauswahl.

Schlüsselwörter

Zahlungsbereitschaft Zahlungsbereitschaftsmessung Preispolitik 

Abstract

Price is one of the most important cues on the marketplace. The price cue is present in all purchase situations and at the very least represents to all consumers the economic outlay that must be sacrificed in order to engage in a given purchase transaction. The price of a product is a crucial determinant of a firm’s profit, which is why many firms focus their marketing strategies on pricing. A valid procedure for measuring consumers’ willingness to pay (WTP) is essential for designing optimal pricing policies or for estimating demand for new products. A broad variety of methods for measuring WTP has been developed in the literature. This article provides a review of the state of the art in measuring consumer WTP. We systematize and discuss existing methods of consumer WTP measurement, discuss potential pitfalls in measuring WTP and identify directions for future research.

Keywords

Willingness to pay willingness to pay measurement pricing 

Literatur

  1. 1.
    Backhaus K, Erichson B, Plinke W, Weiber R (2003) Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 10. Aufl. Springer, BerlinGoogle Scholar
  2. 2.
    Backhaus K, Brzoska L (2004) Conjointanalytische Präferenzmessung zur Prognose von Preisreaktionen. Die Betriebswirtschaft 64(1):39–57Google Scholar
  3. 3.
    Balderjahn I (1994) Der Einsatz der Conjoint-Analyse zur empirischen Bestimmung von Preisresponsefunktionen. Marketing ZFP 16(1):12–20Google Scholar
  4. 4.
    Balistreri E, McClelland GH, Poe G, Schulze W (2001) Can hypothetical questions reveal true values? A laboratory comparison of dichotomous choice and open-ended contingent values with auction values. Environ Resour Econ 18(3):275–292CrossRefGoogle Scholar
  5. 5.
    Batsell RR, Louviere JJ (1991) Experimental analysis of choice. Market Lett 2(3):199–214Google Scholar
  6. 6.
    Becker GM, DeGroot MH, Marschak J (1964) Measuring utility by a single-response sequential method. Behav Sci 9(3):226–232CrossRefGoogle Scholar
  7. 7.
    Ben-Akiva M, Bradley M, Morikawa T, Benjamin J, Novak T, Oppewal H, Rao V (1994) Combining revealed and stated preference data. Market Lett 5(4):335–350CrossRefGoogle Scholar
  8. 8.
    Bernhardt M, Spann M, Skiera B (2005) Reverse pricing. Die Betriebswirtschaft 65(1):104–107Google Scholar
  9. 9.
    Bhatia MR, Fox-Rushby JA (2003) Validity of willingness to pay: Hypothetical versus actual payment. Appl Econ Lett 10(12):737–740CrossRefGoogle Scholar
  10. 10.
    Bishop RC, Heberlein TA (1979) Measuring values of extra-market goods. Are indirect measures biased? Am J Agr Econ 61(5):926–930CrossRefGoogle Scholar
  11. 11.
    Bishop RC, Heberlein TA (1990) The contingent valuation method. In: Johnson RL, Johnsons GV (Hrsg) Economic valuation of natural resources: Issues, theory, and applications. Westview Press, Boulder, CO, S 81–103Google Scholar
  12. 12.
    Bjornstadt DJ, Kahn JR (Hrsg) (1998) The contingent valuation of environmental resources. Elgar, Cheltenham, UKGoogle Scholar
  13. 13.
    Blackburn McK, Harrison GW, Rutström EE (1994) Statistical bias function and informative hypothetical surveys. Am J Agr Econ 76(5):1084–1088CrossRefGoogle Scholar
  14. 14.
    Blumenschein K, Johannesson M, Blomquist GC, Liljas B, O’Conor R (1998) Experimental results on expressed certainty and hypothetical bias in contingent valuation. Southern Econ J 65(1):169–177CrossRefGoogle Scholar
  15. 15.
    Bohm P, Linden J, Sonnegard J (1997) Eliciting reservation prices: Becker-DeGroot-Marschak mechanism vs. markets. Econ J 107(443):1079–1089CrossRefGoogle Scholar
  16. 16.
    Boyle KJ, Bishop RC, Welsh MP (1985) Starting point bias in contingent valuation bidding games. Land Econ 61(2):188–194CrossRefGoogle Scholar
  17. 17.
    Boyle KJ, Johnson FR, McCollum DW, Desvousges WH, Dunford RW, Hudson SP (1996) Valuing public goods. Discrete versus continuous contingent-valuation responses. Land Econ 72(3):381–390CrossRefGoogle Scholar
  18. 18.
    Brown T, Champ P, Bishop R, McCollum D (1996) Which response format reveals the truth about donations to a public good. Land Econ 72(2):152–166CrossRefGoogle Scholar
  19. 19.
    Bucklin RE, Gupta S (1999) Commercial use of upc scanner data: Industry and academic perspectives. Market Sci 18(3):247–273Google Scholar
  20. 20.
    Cameron TA, James MD (1987) Estimating willingness to pay from survey data: An alternative to pretest-market evaluation procedure. J Market Res 24(4):389–395CrossRefGoogle Scholar
  21. 21.
    Carroll JD, Green PE (1995) Psychometric methods in marketing research: Part I, Conjoint analysis. J Market Res 32(4):385–391CrossRefGoogle Scholar
  22. 22.
    Carson RT, Wright JL, Carson NJ, Alberini A, Flores NE (1994) A bibilography of contingent valuation studies and papers. Natural Resource Damage Assessment Inc., La Jolla, CAGoogle Scholar
  23. 23.
    Casey JT, Delquié P (1995) Stated vs implicit willingness to pay under risk. Org Behav Hum Dec 61(2):123–137CrossRefGoogle Scholar
  24. 24.
    Chakravarti D, Greenleaf E, Sinha A, Cheema A, Cox JC, Friedman D, Ho TH, Isaac RM, Mitchell AA, Rapoport A, Rothkopf MH, Srivastava J, Zwick R (2002) Auctions. Research opportunities in marketing. Market Lett 13(3):281–296CrossRefGoogle Scholar
  25. 25.
    Chernev A (2003) Reverse pricing and online price elicitation strategies in consumer choice. J Consum Psychol 13(1–2):51–62CrossRefGoogle Scholar
  26. 26.
    Clement M (2000) Interaktives Fernsehen: Analyse und Prognose seiner Nutzung. DUV, WiesbadenGoogle Scholar
  27. 27.
    Cox JC, Smith VL, Walker JM (1985) Expected revenue in discriminative and uniform price sealed bid auctions. In: Smith VL (Hrsg) Research in experimental economics, 3. JAI Press, Greenwich, CT, S 183–232Google Scholar
  28. 28.
    Cummings RG, Taylor LO (1999) Unbiased value estimates for environmental goods: A cheap talk design for the contingent valuation method. Am Econ Rev 89(3):649–665Google Scholar
  29. 29.
    Cummings RG, Harrison GW, Rutström EE (1995) Homegrown values and hypothetical surveys: Is the dichotomous choice approach incentive-compatible? Am Econ Rev 85(1):260–266Google Scholar
  30. 30.
    Desvousges WH, Hudson SP, Ruby MC (1996) Evaluation CV performance: Separating the light from the heat. In: Bjornstad DJ, Kahn JR (Hrsg) The contingent valuation of environmental resources. Methodological issues and research needs. Elgar, Cheltenham UK Brookfield US, S 117–144Google Scholar
  31. 31.
    Dickie M, Fisher A, Gerking S (1987) Market transactions and hypothetical demand data. A comparative study. J Am Stat Assoc 82(397):69–75CrossRefGoogle Scholar
  32. 32.
    Diller H (2000) Preispolitik, 3. Aufl. Kohlhammer, StuttgartGoogle Scholar
  33. 33.
    Ding M, Grewal R, Liechty J (2005) Incentive-aligned conjoint analysis. J Market Res 42(1):67–82CrossRefGoogle Scholar
  34. 34.
    Eisenberger R, Weber M (1995) Willingness-to-pay and willingness-to-accept for risk and ambiguous lotteries. J Risk Uncertainty 10(May):223–233CrossRefGoogle Scholar
  35. 35.
    Fay S (2004) Partial repeat bidding in the name-your-own-price channel. Market Sci 23(3):407–418CrossRefGoogle Scholar
  36. 36.
    Fox J, Shogren J, Hayes D, Kleibenstein J (1998) CVM-X: Calibrating contingent values with experimental auction markets. Am J Agr Econ 80(3):455–465CrossRefGoogle Scholar
  37. 37.
    Frykblom P (1997) Hypothetical question modes and real willingenss to pay. J Environ Econ Manage 34(3):275–287CrossRefGoogle Scholar
  38. 38.
    Frykblom P (2000) Willingness to pay and the choice of question format: Experimental results. Appl Econ Lett 7(10):665–667CrossRefGoogle Scholar
  39. 39.
    Gabor A, Granger CWJ (1964) Price sensitivity of the consumer. J Advertising Res 4(December):40–44Google Scholar
  40. 40.
    Goldberg SM, Green PE, Wind Y (1984) Conjoint analysis of price premiums for hotel amenities. J Bus 57(1):111–132CrossRefGoogle Scholar
  41. 41.
    Green PE, Goldberg SM, Montemayor M (1981) A hybrid utility estimation model for conjoint analysis. J Market Res 45(1):33–41CrossRefGoogle Scholar
  42. 42.
    Green PE, Krieger AM (1990) A hybrid conjoint model for price-demand estimation. Eur J Oper Res 44(1):28–38CrossRefGoogle Scholar
  43. 43.
    Green PE, Krieger AM (1996) Individualized hybrid models for conjoint analysis. Manage Sci 42(June):850–867Google Scholar
  44. 44.
    Green PE, Srinivasan V (1990) Conjoint analysis in marketing: new development with implications for research and practice. J Marketing 54(October):3–19CrossRefGoogle Scholar
  45. 45.
    Hammann P, Erichson B (2000) Marktforschung, 4. Aufl. Lucius & Lucius, StuttgartGoogle Scholar
  46. 46.
    Hanemann WM (1994) Valuing the environment through contingent valuation. J Econ Perspect 8(4):19–34Google Scholar
  47. 47.
    Harrison GW, Rutström EE (2006) Experimental evidence on the existence of hypothetical bias in value elicitation methods. In: Plott C, Smith VL (Hrsg) Handbook of experimental economics results. North-Holland, im ErscheinenGoogle Scholar
  48. 48.
    Hartmann A (2004) Kaufentscheidungsprognose auf Basis von Befragungen. Gabler, WiesbadenGoogle Scholar
  49. 49.
    Hartmann A, Sattler H (2004) Wie robust sind Methoden zur Präferenzmessung? Z betriebswirt Forsch 56(Februar):3–22Google Scholar
  50. 50.
    Hartmann A, Sattler H (2005) Commercial use of conjoint analysis in Germany, Austria and Switzerland. In: Gustafsson A, Herrmann A, Huber F (Hrsg) Conjoint measurement: Methods and applications, 4. Aufl. Berlin, im ErscheinenGoogle Scholar
  51. 51.
    Hensel-Börner S (2000) Validität computergestützter hybrider Conjoint-Analysen. Deutscher Universitäts-Verlag, WiesbadenGoogle Scholar
  52. 52.
    Hensel-Börner S, Sattler H (2000) Ein empirischer Validitätsvergleich zwischen der Customized Computerized Conjoint Analysis (CCC), der Adaptive Conjoint Analysis (ACA) und Self-Explicated-Verfahren. Z Betriebswirt 70(6):705–727Google Scholar
  53. 53.
    Hoffman E, Menkhaus DJ, Chakravarti D, Field RA, Whipple GD (1993) Using laboratory experimental auctions in marketing research: A case study of new packaging for fresh beef. Market Sci 12(3):318–338CrossRefGoogle Scholar
  54. 54.
    Homburg C, Koschate N, Hoyer WD (2005) Do satisfied customers really pay more? A study of the relationship between customer satisfaction and willingness to pay. J Marketing 69(April):84–96CrossRefGoogle Scholar
  55. 55.
    Jedidi K, Zhang ZJ (2002) Augmenting conjoint analysis to estimate consumer reservation price. Manage Sci 48(October):1350–1368CrossRefGoogle Scholar
  56. 56.
    Johnson RL, Bregenzer NS, Shelby B (1990) Contingent valuation question formats. Dichotomous choice versus open-ended responses. In: Johnson RL, Johnson GV (Hrsg) Economic valuation of natural resources. Issues, theory, and applications. Westview Press, Oxford CO, S 193–203Google Scholar
  57. 57.
    Kaas KP, Ruprecht H (2003) Sind die Vickrey Auktion und der BDM-Mechanismus wirklich anreizkompatibel? Empirische Befunde und optimale Bietstrategien bei unsicheren Zahlungsbereitschaften. Arbeitspapier Nr. 11. Johann Wolfgang Goethe Universität Frankfurt, Frankfurt am MainGoogle Scholar
  58. 58.
    Kagel JH (1995) Auctions: A survey of experimental research. In: Kagel JH, Roth AE (Hrsg) The handbook of experimental economics. Princeton University Press, Princeton NJ, S 501–585Google Scholar
  59. 59.
    Kagel JH, Harstad RM, Levin D (1987) Information impact and allocation rules in auctions with affiliated private values: A laboratory study. Econometrica 55(6):1275–1304CrossRefGoogle Scholar
  60. 60.
    Kagel JH, Levin D (1993) Independent private value auctions: Bidder behavior in first-, second- and third-price auctions with varying numbers of bidders. Econ J 103(419):868–879CrossRefGoogle Scholar
  61. 61.
    Kahneman D, Knetsch JL, Thaler RH (1990) Experimental tests of the endowment effect and the Coase theorem. J Polit Econ 98(6):1325–1348CrossRefGoogle Scholar
  62. 62.
    Kalish S, Nelson P (1991) A comparison of ranking, rating and reservation price measurement in conjoint analysis. Market Lett 2(4):327–335CrossRefGoogle Scholar
  63. 63.
    Kealy MJ, Montgomery M, Dovidio JF (1990) Reliability and predictive validity of contingent values. Does the nature of the goods matter? J Environ Econ Manage 19(3):244–263CrossRefGoogle Scholar
  64. 64.
    Kealy MJ, Turner RW (1993) A test of the equality of close-ended and open-ended contingent valuations. Am J Agr Econ 75(2):321–331CrossRefGoogle Scholar
  65. 65.
    Keane MP (1997) Current issues in discrete choice modeling. Market Lett 8(3):307–322CrossRefGoogle Scholar
  66. 66.
    Kohli R, Mahajan V (1991) A reservation-price model for optimal pricing of multi-attribute products in conjoint analysis. J Market Res 28(3):347–354CrossRefGoogle Scholar
  67. 67.
    Klemperer P (1999) Auction theory: A guide to the literature. J Econ Surveys 13(3):227–286CrossRefGoogle Scholar
  68. 68.
    Loomis J, Brown T, Lucero B, Peterson G (1996) Improving validity experiments of contingent valuation methods: Results of efforts to reduce the disparity of hypothetical and actual willingenss to pay. Land Econ 72(4):450–461CrossRefGoogle Scholar
  69. 69.
    Louviere JJ, Woodworth G (1983) Design and analysis of simulated consumer choice or allocation experiments: An approach based on aggregate data. J Market Res 20(4):350–367CrossRefGoogle Scholar
  70. 70.
    Lusk J, Feldkamp T, Schroeder TC (2004) Experimental auction procedure. Impact on valuation of quality differentiated goods. Am J Agr Econ 86(2):389–405CrossRefGoogle Scholar
  71. 71.
    Lusk JL, Schroeder TC (2004) Are choice experiments incentive compatible? A test with quality differentiated beef steaks. Am J Agr Econ 86(2):467–482CrossRefGoogle Scholar
  72. 72.
    Marn MV, Roegner EV, Zawada CC (2004) The Price Advantage. Wiley & Sons, HobokenGoogle Scholar
  73. 73.
    McAfee RP, McMillan J (1987) Auctions and bidding. J Econ Lit 25(June):699–738Google Scholar
  74. 74.
    McFadden D (1994) Contingent valuation and social choice. Am J Agr Econ 76(4):689–708CrossRefGoogle Scholar
  75. 75.
    McFadden D (1998) Measuring willingness-to-pay for transportation improvements. In: Gärling T, Laitila T, Westin K (Hrsg) Theoretical foundations of travel choice modelling. Elsevier Science, Amsterdam, S 339–364CrossRefGoogle Scholar
  76. 76.
    Menges R, Schröder C, Traub S (2004) Erhebung von Zahlungsbereitschaften für Ökostrom: Methodische Aspekte und Ergebnisse einer experimentellen Untersuchung. Marketing ZFP 26(3):247–258Google Scholar
  77. 77.
    Mitchell RC, Carson RT (1989) Using surveys to value public goods: The contingent valuation method. Resources for the Future, Washington, DCGoogle Scholar
  78. 78.
    Noussair C, Robin S, Ruffieux B (2004) Revealing consumers’ willingness-to-pay: A comparison of the BDM mechanism and the Vickrey auction. J Econ Psychol 25(6):725–741Google Scholar
  79. 79.
    Neill HR (1999) Hypothetical versus real willingness to pay. Appl Econ Lett 6(5):267–269CrossRefGoogle Scholar
  80. 80.
    Neill HR, Cummings RG, Ganderton PT, Harrison GW, McGuckin T (1994) Hypothetical surveys and real economic commitments. Land Econ 70(2):145–154CrossRefGoogle Scholar
  81. 81.
    Nitschke T, Sattler H (2005) Präferenzstrukturen und Zahlungsbereitschaften für Online-Medieninhalte: Eine empirische Analyse am Beispiel von Online-Videoangeboten. In: Posselt T, Schade C (Hrsg) Quantitative Marketingforschung in Deutschland. Festschrift für Klaus-Peter Kaas. Duncker & Humblot, Berlin, S 59–80Google Scholar
  82. 82.
    Nitschke T, Völckner F (2006) Präferenzmessung bei unsicheren Produkteigenschaften: Risikoberücksichtigung bei Ergebnissen aus Conjoint-Analysen. Erscheint in Z betriebswirt Forsch 58Google Scholar
  83. 83.
    Onwujekwe O, Hanson K, Fox-Rushby J (2005) Do divergences between stated and actual willingness to pay signify the existence of bias in contingent valuation surveys? Soc Sci Med 60(3):525–536CrossRefGoogle Scholar
  84. 84.
    Peter JP (1979) Reliability: A review of psychometric basics and recent marketing practices. J Market Res 16(1):6–17CrossRefGoogle Scholar
  85. 85.
    Posavac SS (1997) Strategic overbidding in contingent valuation: Stated economic value of public goods varies according to consumers’ expectations of funding source. J Econ Psychol 19(2):205–214CrossRefGoogle Scholar
  86. 86.
    Prelec D, Simester D (2001) Always leave home without it: a further investigation of the credit-card effect on willingness to pay. Market Lett 12(1):5–12CrossRefGoogle Scholar
  87. 87.
    Reibstein D, Bateson JE, Boulding W (1988) Conjoint analysis reliability: Empirical findings. Market Sci 7(3):271–286Google Scholar
  88. 88.
    Ruprecht H (2005) Anreizkompatible Verfahren zur Erhebung von Zahlungsbereitschaften. Dissertation, Johann Wolfgang Goethe Universität Frankfurt am MainGoogle Scholar
  89. 89.
    Rutström EE (1998) Home-grown values and incentive compatible design. Int J Game Theory 27(3):427–441CrossRefGoogle Scholar
  90. 90.
    Sattler H (2005) Präferenzforschung für Innovationen. In: Albers S, Gassmann O (Hrsg) Handbuch Technologie- und Innovationsmanagement. Strategie – Umsetzung – Controlling. Gabler, Wiesbaden, S 359–378Google Scholar
  91. 91.
    Sattler H, Nitschke T (2003) Ein empirischer Vergleich von Instrumenten zur Erhebung von Zahlungsbereitschaften. Z betriebswirt Forsch 55(Juni):364–381Google Scholar
  92. 92.
    Sattler H, Hensel-Börner S (2003) A comparison of conjoint measurement with self-explicated approaches. In: Gustafsson A, Herrmann A, Huber F (Hrsg) Conjoint measurement: Methods and applications. Springer, Berlin, S 147–159Google Scholar
  93. 93.
    Schade C, Kunreuther H (2002) Worry and the illusion of safety: Evidence from a real-objects experiment. Discussion Paper Nr. 25, SFB 373, Humboldt-Universität zu BerlinGoogle Scholar
  94. 94.
    Schade C, Kunreuther H, Kaas KP (2002) Low-probability insurance decisions: The role of concern. Discussion Paper Nr. 23, SFB 373, Humboldt-Universität zu BerlinGoogle Scholar
  95. 95.
    Schäfers B (2004) Preisgebote im Internet: Neue Ansätze zur Messung individueller Zahlungsbereitschaften. Deutscher Universitäts-Verlag, WiesbadenGoogle Scholar
  96. 96.
    Simon H (1992) Preismanagement: Analyse, Strategie, Umsetzung, 2. Aufl. Gabler, WiesbadenGoogle Scholar
  97. 97.
    Sinden JA (1988) Empirical tests of hypothetical biases in consumers’ surplus surveys. Aust J Agr Econ 32(2–3):98–112Google Scholar
  98. 98.
    Skiera B (1999) Mengenbezogene Preisdifferenzierung bei Dienstleistungen. Gabler, WiesbadenGoogle Scholar
  99. 99.
    Skiera B, Spann M (2003) Auktionen. In: Diller H, Herrmann A (Hrsg) Handbuch Preispolitik. Gabler, Wiesbaden, S 623–641Google Scholar
  100. 100.
    Skiera B, Revenstorff I (1999) Auktionen als Instrument zur Erhebung von Zahlungsbereitschaften. Z betriebswirt Forsch 51(3):224–242Google Scholar
  101. 101.
    Smith VL (1962) An experimental study of competitive market behavior. J Polit Econ 70(April):111–137CrossRefGoogle Scholar
  102. 102.
    Smith VL (1976) Experimental economics: Induced value theory. Am Econ Rev 66(2):274–279Google Scholar
  103. 103.
    Spann M, Skiera B, Schäfers B (2005) Reverse-Pricing Verfahren und deren Möglichkeiten zur Messung von individuellen Suchkosten und Zahlungsbereitschaften. Z betriebswirt Forsch 57(März):107–129Google Scholar
  104. 104.
    Srinivasan V (1988) A conjunctive-compensatory approach to the self-explication of multiattributed preferences. Decision Sci 19(2):295–305CrossRefGoogle Scholar
  105. 105.
    Tversky A, Kahneman D (1986) Rational choice and the framing of decisions. J Bus Res 59(4):251–278Google Scholar
  106. 106.
    Urban GL, Weinberg BD, Hauser JR (1996) Premarket forecasting of really-new products. J Marketing 60(January):47–60CrossRefGoogle Scholar
  107. 107.
    Urban GL, Hauser JR, Qualls WJ, Weinberg B, Bohlmann JD, Chicos RA (1997) Information acceleration: Validation and lessons from the field. J Market Res 34(1):143–153CrossRefGoogle Scholar
  108. 108.
    Völckner F (2006) An empirical comparison of methods for measuring consumers’ willingness to pay. Market Lett 17:137–149CrossRefGoogle Scholar
  109. 109.
    Voeth M (2000) Nutzenmessung in der Kaufverhaltensforschung. Die Hierarchische Individualisierte Limit Conjoint-Analyse (HILCA). Gabler, WiesbadenGoogle Scholar
  110. 110.
    Voeth M, Hahn C (1998) Limit Conjoint-Analyse. Marketing ZFP 20(2):119–132Google Scholar
  111. 111.
    Wertenbroch K (1998) Consumption self-control by rationing purchase quantities of virtue and vice. Market Sci 17(4):317–337Google Scholar
  112. 112.
    Wertenbroch K, Skiera B (2002) Measuring consumers’ willingness to pay at the point of purchase. J Market Res 39(2):228–241CrossRefGoogle Scholar
  113. 113.
    Wübker G, Mahajan V (1999) A conjoint analysis-based procedure to measure reservation price and to optimally price product bundles. In: Fürderer R, Herrmann A, Wübker G (Hrsg) Optimal bundling: Marketing strategies for improving economic performance. Springer, Berlin, S 157–174Google Scholar

Copyright information

© © Wirtschaftsuniversität Wien, Austria 2006

Authors and Affiliations

  1. 1.Institut für Handel und Marketing: Arbeitsbereich Marketing & BrandingUniversität HamburgHamburgDeutschland

Personalised recommendations