Foetal ECG and STAN technology—a review

Clinical Review

Abstract

Waveform analysis of the foetal electrocardiogram (FECG) has been studied from physiological, signal processing and clinical aspects. Two randomised controlled trials (RCT) have been performed during the last 20 years, monitoring high-risk labours with cardiotocography (CTG) only or combining CTG with the ST waveform analysis of the FECG. A significant decrease in neonates born with metabolic acidosis in cord artery blood was observed, along with a decrease of operative deliveries for foetal distress. Blinded assessment of neonatal outcome in the latest RCT revealed an improvement of the Apgar score and the need for intensive care and neonatal encephalopathy when monitoring with CTG in combination with FECG. Also, the interobserver agreement for ST analysis was higher than for CTG alone. The system ability of the STAN technology, including an educational model, was studied in several European University clinics as an EU-supported project. During the last 6 months, the project confirmed the incidence of metabolic acidosis (0.64%) and moderate/severe encephalopathy in the earlier RCT on using ST information in addition to CTG. The available evidence suggests that the expected outcome could be achieved in most clinics, with a special focus on systematic teaching and training. Compared to ST analysis, foetal blood sampling (FBS) for pH analysis is technically complicated and, because it only presents momentary information, needs to be repeated to give adequate information. The STAN method provides continuous on-line information. ST waveform analysis in addition to CTG has the potential to give significant benefits in reducing operative deliveries for foetal distress and reducing the incidence of metabolic acidosis. However, this will depend on the appropriate education and use of STAN according to the guidelines provided.

Keywords

Foetal ECG Cardiotocography Intrapartum monitoring Review 

References

  1. 1.
    Thacker SB, Stroup D, Chang M (2001) Continuous electronic heart rate monitoring for fetal assessment during labor. The Cochrane Database of Systematic Reviews, issue 2, article no CD000063Google Scholar
  2. 2.
    MacDonald D, Grant A, Sheridan-Pereira M, Boylan P, Chalmers I (1985) The Dublin randomized controlled trial of intrapartum fetal heart rate monitoring. Am J Obstet Gynecol 152(5):524–539PubMedGoogle Scholar
  3. 3.
    Grant A, O’Brien N, Joy MT, Hennessy E, MacDonald D (1989) Cerebral palsy among children born during the Dublin randomised trial of intrapartum monitoring. Lancet 2(8674):1233–1236CrossRefPubMedGoogle Scholar
  4. 4.
    Westgate J (1993) An evaluation of electronic fetal monitoring with clinical validation of ST waveform analysis during labour. PhD thesis, University of Plymouth, UKGoogle Scholar
  5. 5.
    Boehm FH (1999) Intrapartum fetal heart rate monitoring. Obstet Gynecol Clin North Am 26(4):623–639PubMedGoogle Scholar
  6. 6.
    Confidential enquiry into stillbirths and deaths in infancy (CESDI) (1995) Highlights of the 4th annual report. Pract Midwife 1Google Scholar
  7. 7.
    Hon EH, Quilligan EJ (1967) The classification of fetal heart rate. II: a revised working classification. Conn Med 31(11):779–784PubMedGoogle Scholar
  8. 8.
    Nielsen PV, Stigsby B, Nickelsen C, Nim J (1987) Intra- and inter-observer variability in the assessment of intrapartum cardiotocograms. Acta Obstet Gynecol Scand 66(5):421–424Google Scholar
  9. 9.
    Donker DK, Van Geijn HP, Hasman A (1993) Interobserver variation in the assessment of fetal heart rate recordings. Eur J Obstet Gynecol Reprod Biol 52(1):21–28CrossRefPubMedGoogle Scholar
  10. 10.
    Bernardes J, Costa-Pereira A, Ayres-de-Campos D, van Geijn HP, Pereira-Leite L (1997) Evaluation of interobserver agreement of cardiotocograms. Int J Gynaecol Obstet 57(1):33–37CrossRefPubMedGoogle Scholar
  11. 11.
    Blix E, Sviggum O, Koss KS, Oian P (2003) Inter-observer variation in assessment of 845 labour admission tests: comparison between midwives and obstetricians in the clinical setting and two experts. BJOG 110(1):1–5Google Scholar
  12. 12.
    Blix E, Oian P (2001) Labor admission test: an assessment of the test’s value as screening for fetal distress in labor. Acta Obstet Gynecol Scand 80(8):738–743CrossRefPubMedGoogle Scholar
  13. 13.
    Keith RD, Beckley S, Garibaldi JM, Westgate JA, Ifeachor EC, Greene KR (1995) A multicentre comparative study of 17 experts and an intelligent computer system for managing labour using the cardiotocogram. Br J Obstet Gynaecol 102(9):688–700PubMedGoogle Scholar
  14. 14.
    MacLennan A (1999) A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 319(7216):1054–1059PubMedGoogle Scholar
  15. 15.
    Murphy KW, Johnson P, Moorcraft J, Pattinson R, Russell V, Turnbull A (1990) Birth asphyxia and the intrapartum cardiotocograph. Br J Obstet Gynaecol 97(6):470–479PubMedGoogle Scholar
  16. 16.
    Nelson KB, Dambrosia JM, Ting TY, Grether JK (1996) Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N Engl J Med 334(10):613–618CrossRefPubMedGoogle Scholar
  17. 17.
    Impey L, Reynolds M, MacQuillan K, Gates S, Murphy J, Sheil O (2003) Admission cardiotocography: a randomised controlled trial. Lancet 361(9356):465–470CrossRefPubMedGoogle Scholar
  18. 18.
    Westgate J, Harris M, Curnow JS, Greene KR (1993) Plymouth randomized trial of cardiotocogram only versus ST waveform plus cardiotocogram for intrapartum monitoring in 2400 cases. Am J Obstet Gynecol 169(5):1151–1160PubMedGoogle Scholar
  19. 19.
    Amer-Wahlin I, Hellsten C, Noren H, Hagberg H, Herbst A, Kjellmer I, Lilja H, Lindoff C, Mansson M, Martensson L, Olofsson P, Sundstrom A, Marsal K (2001) Cardiotocography only versus cardiotocography plus ST analysis of fetal electrocardiogram for intrapartum fetal monitoring: a Swedish randomised controlled trial. Lancet 358(9281):534–538CrossRefPubMedGoogle Scholar
  20. 20.
    Symonds EM, Sahota D, Chang A (2001) Fetal electrocardiography. Imperial College Press, LondonGoogle Scholar
  21. 21.
    Widmark C, Lindecrantz K, Murray H, Rosen KG (1992) Changes in the PR, RR intervals and ST waveform of the fetal lamb electrocardiogram with acute hypoxemia. J Dev Physiol 18(3):99–103PubMedGoogle Scholar
  22. 22.
    Luzietti R, Erkkola R, Hasbargen U, Mattson LA, Thoulon JM, Rosen KG (1997) European community multicentre trial “Fetal ECG analysis during labour”: the PR interval. J Perinat Med 25(1):27–34PubMedGoogle Scholar
  23. 23.
    Westgate JA, Gunn AJ, Bennet L, Gunning MI, de Haan HH, Gluckman PD (1998) Do fetal electrocardiogram PR-RR changes reflect progressive asphyxia after repeated umbilical cord occlusion in fetal sheep? Pediatr Res 44(3):297–303PubMedGoogle Scholar
  24. 24.
    Fenn WO (1939) The deposition of potassium and phosphate with glycogen in rat livers. J Biol Chem 128:297–308Google Scholar
  25. 25.
    Hokegard KH, Eriksson BO, Kjellmer I, Magno R, Rosen KG (1981) Myocardial metabolism in relation to electrocardiographic changes and cardiac function during graded hypoxia in the fetal lamb. Acta Physiol Scand 113(1):1–7PubMedGoogle Scholar
  26. 26.
    Wohlfart B (1987) A simple model for demonstration of STT-changes in ECG. Eur Heart J 8(4):409–416Google Scholar
  27. 27.
    Sundstrom A-K, Rosen D, Rosen KG (2000) Fetal surveillance. Neoventa Medical, Gothenburg, SwedenGoogle Scholar
  28. 28.
    Rosen KG, Kjellmer I (1975) Changes in the fetal heart rate and ECG during hypoxia. Acta Physiol Scand 93(1):59–66PubMedGoogle Scholar
  29. 29.
    Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia. J Physiol 146(3):516–538PubMedGoogle Scholar
  30. 30.
    Rosen KG, Isaksson O (1976) Alterations in fetal heart rate and ECG correlated to glycogen, creatine phosphate and ATP levels during graded hypoxia. Biol Neonate 30:17–24Google Scholar
  31. 31.
    Greene KR, Dawes GS, Lilja H, Rosen KG (1982) Changes in the ST waveform of the fetal lamb electrocardiogram with hypoxemia. Am J Obstet Gynecol 144(8):950–958PubMedGoogle Scholar
  32. 32.
    Stern L, Lind J, Kaplan B (1961) Direct human fetal electrocardiography (with studies of the effect of adrenaline, atropine, clamping of the umbilical cord and placenta separation of the fetal ECG). Biol Neonate 3:49Google Scholar
  33. 33.
    Lagercrantz H, Bistoletti P (1977) Catecholamine release in the newborn infant at birth. Pediatr Res 11(8):889–893PubMedGoogle Scholar
  34. 34.
    Hokegard KH, Karlsson K, Kjellmer I, Rosen KG (1979) ECG-changes in the fetal lamb during asphyxia in relation to beta-adrenoceptor stimulation and blockade. Acta Physiol Scand 105(2):195–203PubMedGoogle Scholar
  35. 35.
    Westgate JA, Bennet L, Brabyn C, Williams CE, Gunn AJ (2001) ST waveform changes during repeated umbilical cord occlusions in near-term fetal sheep. Am J Obstet Gynecol 184(4):743–751CrossRefPubMedGoogle Scholar
  36. 36.
    Widmark C (1991) Fetal electrocardiogram relationships to oxygen lack, maturation and growth retardation. An experimental study. Dept of Physiology, University of Gothenburg, SwedenGoogle Scholar
  37. 37.
    Rosen KG (2001) Intrapartum fetal monitoring and fetal ECG–time for a change. Arch Perinat Med 7:7–12Google Scholar
  38. 38.
    Braunwald E, Maroko PR (1976) ST-segment mapping. Realistic and unrealistic expectations. Circulation 54(4):529–532PubMedGoogle Scholar
  39. 39.
    Gennser G, Nilsson E (1968) The relation between the action potential and the active state in human fetal myocardium and its dependence on muscle length and contraction frequency. Acta Physiol Scand 73(1):42–53PubMedGoogle Scholar
  40. 40.
    Gelli MG, Gyulai F (1969) Effect of glucose infusion in the mother before delivery on the ECG of rabbit foetuses under anoxia. Acta Obstet Gynecol Scand 48(1):56–63PubMedGoogle Scholar
  41. 41.
    Pardi G, Uderzo A, Tucci E, Arata GD (1972) Effect of hypoxia on the electrocardiogram and other cardiovascular parameters of the mature sheep fetus. Preliminary results. Minerva Ginecol 24(10):541–543PubMedGoogle Scholar
  42. 42.
    Myers RE (1972) Two patterns of perinatal brain damage and their conditions of occurrence. Am J Obstet Gynecol 112(2):246–276PubMedGoogle Scholar
  43. 43.
    Yeh MN, Morishima HO, Niemann WH, James LS (1975) Myocardial conduction defects in association with compression of the umbilical cord. Experimental observations on fetal baboons. Am J Obstet Gynecol 121(7):951–957PubMedGoogle Scholar
  44. 44.
    Lilja H, Greene KR, Karlsson K, Rosen KG (1985) ST waveform changes of the fetal electrocardiogram during labour—a clinical study. Br J Obstet Gynaecol 92(6):611–617PubMedGoogle Scholar
  45. 45.
    Rosen KG, Hrbek A, Karlsson K, Kjellmer I (1986) Fetal cerebral, cardiovascular and metabolic reactions to intermittent occlusion of ovine maternal placental blood flow. Acta Physiol Scand 126(2):209–216PubMedGoogle Scholar
  46. 46.
    Dagbjartsson A, Herbertsson G, Stefansson TS, Kjeld M, Lagercrantz H, Rosen KG (1989) Beta-adrenoceptor agonists and hypoxia in sheep fetuses. Acta Physiol Scand 137(2):291–299PubMedGoogle Scholar
  47. 47.
    Watanabe T, Okamura K, Tanigawara S, Shintaku Y, Akagi K, Endo H, Yajima A (1992) Change in electrocardiogram T-wave amplitude during umbilical cord compression is predictive of fetal condition in sheep. Am J Obstet Gynecol 166(1 Pt 1):246–255PubMedGoogle Scholar
  48. 48.
    Rosen KG, Lilja H, Hokegard KH, Kjellmer I (1985) The relationship between cerebral cardio-vascular and metabolic functions during labour in the lamb fetus. In: The physiol development of fetus and newborn, Academic Press, London, pp 461–465Google Scholar
  49. 49.
    Widmark C, Jansson T, Lindecrantz K, Rosen KG (1991) ECG waveform, short term heart rate variability and plasma catecholamine concentrations in response to hypoxia in intrauterine growth retarded guinea-pig fetuses. J Dev Physiol 15(3):161–168PubMedGoogle Scholar
  50. 50.
    Cremer M (1906) Uber die direkte Ableitung der Aktonsstrøme des mensclichen Herzen vom Oesophagus, und uber das Elektrokardiogramm des Føtus. Munch med Wschr 53:811Google Scholar
  51. 51.
    Einthoven W (1902) Galvanometric registration of the human electrocardiogram. Eduard Ijdo, Leiden, The Netherlands, pp 101–106Google Scholar
  52. 52.
    Hon EH (1963) Instrumentation of fetal heart rate and fetal electrocardiography. II: a vaginal electrode. Am J Obstet Gynecol 86:772–784PubMedGoogle Scholar
  53. 53.
    Hon EH, Lee ST (1965) The fetal electrocardiogram. 3: display techniques. Am J Obstet Gynecol 91:56–60PubMedGoogle Scholar
  54. 54.
    Larks SD, Longo LD (1962) Electrocardiographic studies of the fetal heart during delivery. Obstet Gynecol 19:740–747PubMedGoogle Scholar
  55. 55.
    Larks SSD, Larks GG (1966) Comparative aspects of the fetal and newborn electrocardiograms. Evidence for the validity of the method for calculation of the electrical axis of the fetal heart. Am J Obstet Gynecol 96(4):553–555PubMedGoogle Scholar
  56. 56.
    Pardi G, Tucci E, Uderzo A, Zanini D (1974) Fetal electrocardiogram changes in relation to fetal heart rate patterns during labor. Am J Obstet Gynecol 118(2):243–250PubMedGoogle Scholar
  57. 57.
    Marvell CJ, Kirk DL, Jenkins HM, Symonds EM (1980) The normal condition of the fetal electrocardiogram during labour. Br J Obstet Gynaecol 87(9):786–796PubMedGoogle Scholar
  58. 58.
    Jenkins HM, Symonds EM, Kirk DL, Smith PR (1986) Can fetal electrocardiography improve the prediction of intrapartum fetal acidosis?. Br J Obstet Gynaecol 93(1):6–12PubMedGoogle Scholar
  59. 59.
    Rosen KG, Lindecrantz K (1980) STAN—the Gothenburg model for fetal surveillance during labour by ST analysis of the fetal electrocardiogram. Clin Phys Physiol Meas 10(Suppl B):51–56CrossRefGoogle Scholar
  60. 60.
    Lindecrantz KG, Lilja H, Widmark C, Rosen KG (1988) Fetal ECG during labour: a suggested standard. J Biomed Eng 10(4):351–353PubMedGoogle Scholar
  61. 61.
    Newbold S, Wheeler T, Clewlow F (1991) Comparison of the T/QRS ratio of the fetal electrocardiogram and the fetal heart rate during labour and the relation of these variables to condition at delivery. Br J Obstet Gynaecol 98(2):173–178PubMedGoogle Scholar
  62. 62.
    Lilja H, Arulkumaran S, Lindecrantz K, Ratnam SS, Rosen KG (1988) Fetal ECG during labour: a presentation of a microprocessor system. J Biomed Eng 10(4):348–350PubMedGoogle Scholar
  63. 63.
    Arulkumaran S, Lilja H, Lindecrantz K, Ratnam SS, Thavarasah AS, Rosen KG (1990) Fetal ECG waveform analysis should improve fetal surveillance in labour. J Perinat Med 18(1):13–22PubMedGoogle Scholar
  64. 64.
    Rosen KG (1991) Quantification of intrapartum asphyxia. J Perinat Med 19(Suppl 1):337–341PubMedGoogle Scholar
  65. 65.
    Johanson RB, Rice C, Shokr A, Doyle M, Chenoy R, O’Brien PM (1992) ST-waveform analysis of the fetal electrocardiogram could reduce fetal blood sampling. Br J Obstet Gynaecol 99(2):167–168PubMedGoogle Scholar
  66. 66.
    Murphy KW, Russell V, Johnson P, Valente J (1992) Clinical assessment of fetal electrocardiogram monitoring in labour. Br J Obstet Gynaecol 99(1):32–37PubMedGoogle Scholar
  67. 67.
    Luzietti R, Erkkola R, Hasbargen U, Mattsson LA, Thoulon JM, Rosen KG (1999) European community multicentre trial “Fetal ECG analysis during labour”: ST plus CTG analysis. J Perinat Med 27(6):431–440CrossRefPubMedGoogle Scholar
  68. 68.
    Amer-Wahlin I, Bordahl P, Eikeland T, Hellsten C, Noren H, Sornes T, Rosen KG (2002) ST analysis of the fetal electrocardiogram during labor: Nordic observational multicenter study. J Matern Fetal Neonatal Med 12(4):260–266PubMedGoogle Scholar
  69. 69.
    Amer-Wahlin I, Kallen K, Herbst A, Rydhstroem H, Sundstrom A-K, Marsal K (2005) Implementation of new medical technique: experience from the Swedish randomised controlled trial on fetal ECG during labour. J Matern Fetal Neonatal Med (in press)Google Scholar
  70. 70.
    Noren H, Amer-Wahlin I, Hagberg H, Herbst A, Kjellmer I, Marsal K, Olofsson P, Rosen KG (2003) Fetal electrocardiography in labor and neonatal outcome: data from the Swedish randomized controlled trial on intrapartum fetal monitoring. Am J Obstet Gynecol 188(1):183–192CrossRefPubMedGoogle Scholar
  71. 71.
    Neilson JP (2003) Fetal electrocardiogram (ECG) for fetal monitoring during labour. The Cochrane Database of Systematic Reviews, issue 2, article no CD000116Google Scholar
  72. 72.
    Hagberg H, Amer-Wahlin I, Herbst A, Lilja H, Noren H, Olofsson P, Marsal K (2004) A new monitoring method for safer child delivery. Lower number of metabolic acidosis cases with fetal ECG and cardiotocography. Lakartidningen 101(48):3875–3876PubMedGoogle Scholar
  73. 73.
    Rosen KG, Amer-Wahlin I, Luzietti R, Noren H (2004) Fetal ECG waveform analysis. Best Pract Res Clin Obstet Gynaecol 18(3):485–514CrossRefPubMedGoogle Scholar
  74. 74.
    Olofsson P (2003) Current status of intrapartum fetal monitoring: cardiotocography versus cardiotocography + ST analysis of the fetal ECG. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S113–S118CrossRefPubMedGoogle Scholar
  75. 75.
    Rooth G, Huch R (eds) (1987) FIGO News: guidelines for the use of fetal monitoring, vol. 25, pp159–167Google Scholar
  76. 76.
    Dervaitis KL, Poole M, Schmidt G, Penava D, Natale R, Gagnon R (2004) ST segment analysis of the fetal electrocardiogram plus electronic fetal heart rate monitoring in labor and its relationship to umbilical cord arterial blood gases. Am J Obstet Gynecol 191(3):879–884CrossRefPubMedGoogle Scholar
  77. 77.
    Kwee A, van der Hoorn-van den Beld CW, Veerman J, Dekkers AH, Visser GH (2004) STAN S21 fetal heart monitor for fetal surveillance during labor: an observational study in 637 patients. J Matern Fetal Neonatal Med 15(6):400–407CrossRefPubMedGoogle Scholar
  78. 78.
    Siggaard-Andersen O (1971) An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 27(3):239–245PubMedGoogle Scholar
  79. 79.
    Rosen KG, Murphy KW (1991) How to assess fetal metabolic acidosis from cord samples. J Perinat Med 19(3):221–226PubMedGoogle Scholar
  80. 80.
    Westgate J, Greene K (1994) How well is fetal blood sampling used in clinical practice? Br J Obstet Gynaecol 101(3):250–251PubMedGoogle Scholar
  81. 81.
    Greene KR (1996) Scalp blood gas analysis. Obstet Gynecol Clin North Am 26(4):641–656Google Scholar
  82. 82.
    Luttkus AK, Noren H, Stupin JH, Blad S, Arulkumaran S, Erkkola R, Hagberg H, Lenstrup C, Visser GH, Tamazian O, Yli B, Rosen KG, Dudenhausen JW (2004) Fetal scalp pH and ST analysis of the fetal ECG as an adjunct to CTG. A multi-center, observational study. J Perinat Med 32(6):486–494CrossRefPubMedGoogle Scholar
  83. 83.
    Ross MG, Devoe LD, Rosen KG (2004) ST-segment analysis of the fetal electrocardiogram improves fetal heart rate tracing interpretation and clinical decision making. J Matern Fetal Neonatal Med 15(3):181–185CrossRefPubMedGoogle Scholar
  84. 84.
    Amer-Wahlin I, Ingemarsson I, Marsal K, Herbst A (2005) Fetal heart rate patterns and ECG ST segment changes preceding metabolic acidaemia at birth. BJOG 112(2):160–165PubMedGoogle Scholar
  85. 85.
    Fetal ECG waveform analysis—current developments (2004) In: Proceedings of the XIX European congress of perinatal medicine, Athens, Greece, October 2004Google Scholar
  86. 86.
    Spencer JA, Badawi N, Burton P, Keogh J, Pemberton P, Stanley F (1997) The intrapartum CTG prior to neonatal encephalopathy at term: a case-control study. Br J Obstet Gynaecol 104(1):25–28PubMedGoogle Scholar
  87. 87.
    Rosser J (1998) Confidential enquiry into stillbirths and deaths in infancy. Highlights of the 5th annual report (I). Pract Midwife 1(10):32–33Google Scholar
  88. 88.
    Niswander K, Henson G, Elbourne D, Chalmers I, Redman C, Macfarlane A, Tizard P (1984) Adverse outcome of pregnancy and the quality of obstetric care. Lancet 2(8407):827–831CrossRefPubMedGoogle Scholar
  89. 89.
    Gaffney G, Sellers S, Flavell V, Squier M, Johnson A (1994) Case-control study of intrapartum care, cerebral palsy, and perinatal death. BMJ 308(6931):743–750PubMedGoogle Scholar
  90. 90.
    Gunn AJ, Gunn TR (1997) Changes in risk factors for hypoxic-ischaemic seizures in term infants. Aust N Z J Obstet Gynaecol 37(1):36–39PubMedGoogle Scholar
  91. 91.
    Grant A, Chalmers I, Enkin M, Keirese MJNC (1989) Monitoring the fetus during labor. In: Effective care in pregnancy and childbirth, effective care in pregnancy and childbirth. Oxford University Press, Oxford, pp 846–882Google Scholar
  92. 92.
    Westgate J, Greene K (1994) The use of the fetal electrocardiogram in labour. Br J Obstet Gynaecol 101(12):9–17PubMedGoogle Scholar
  93. 93.
    Amer-Wahlin I (2003) Fetal ECG waveform analysis for intrapartum monitoring. PhD dissertation, Lund University, SwedenGoogle Scholar

Copyright information

© European Board and College of Obstetrics and Gynaecology 2005

Authors and Affiliations

  1. 1.Department of Obstetrics and GynaecologyUniversity HospitalLundSweden
  2. 2.Department of Obstetrics and GynaecologyRikshospitalet University HospitalOsloNorway
  3. 3.Department of Obstetrics and GynaecologySt. Georges HospitalLondonUK

Personalised recommendations