Advertisement

Tree Genetics & Genomes

, 16:29 | Cite as

Simple DNA marker system reveals genetic diversity of MYB genotypes that determine skin color in grape genetic resources

  • Akifumi AzumaEmail author
  • Atsushi Kono
  • Akihiko Sato
Original Article
  • 37 Downloads
Part of the following topical collections:
  1. Breeding

Abstract

Grape skin color is determined mainly by the quantity and composition of anthocyanins, and the MYB genotype at the color locus on chromosome 2 is the major genetic determinant of anthocyanin biosynthesis. Recently, poor coloration of grape berry skin has become a common problem caused mainly by high temperatures during maturation. In the present study, we developed a simple DNA marker system for predicting the MYB genotype at the color locus. Our sample preparation method for PCR and efficient DNA markers can distinguish many MYB genotypes derived from V. vinifera and interspecific hybrid grapes simultaneously. Furthermore, we constructed a database of the relationship between MYB genotype at the color locus and the “Skin color”, “Species”, “Region of origin”, and “Utilization” categories in more than 700 grape genetic resources. We found a significant association between MYB genotypes and each of the four categories. This novel DNA marker system and the database of MYB genotypes will contribute to the development of new grape varieties with well-pigmented berries despite global atmospheric warming. This study may also contribute to elucidation of the evolutionary differentiation of MYB genotypes at the color locus in Vitis species.

Keywords

DNA marker Genetic diversity Grape Haplotype Skin color 

Notes

Acknowledgments

We thank Tamami Nakasumi, Fujie Umeda, Maki Nishimura, and Miho Kohata for technical assistance. We are also grateful to the members of the Technical Support Center at our institute for preparation of plant materials.

Authors’ contributions

All authors were involved in carrying out the research and in writing and/or reviewing the manuscript.

Funding information

This work was supported in part by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP) “Technologies for Smart Bio-industry and Agriculture” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

MYB genotypes at the color locus in grape genetic resources can be found in the supplementary information (Table S1).

Supplementary material

11295_2020_1421_MOESM1_ESM.xlsx (106 kb)
Table S1 (XLSX 105 kb).
11295_2020_1421_MOESM2_ESM.xlsx (22 kb)
Table S2 (XLSX 21 kb).
11295_2020_1421_MOESM3_ESM.pptx (693 kb)
Fig. S1 Sample preparation and MYB genotyping. a Grape seeds are germinated in trays in a greenhouse at a constant temperature of 24 °C. b Between 20 and 80% of seeds germinate within 2 weeks. c The seed trays are brought into the laboratory. d Filter paper is prepared before pricking the leaves. e Each leaf sample is pricked 20 times with a toothpick. f The material (including DNA) is transferred into 20 μL of TE buffer. g The samples are heated for 10 min at 75 °C and then cooled to 4 °C. h Aliquots of the crude DNA extracts (0.5 μL) are used for PCR. i PCR was performed and the fragment sizes were analyzed (PPTX 692 kb).
11295_2020_1421_MOESM4_ESM.pptx (307 kb)
Fig. S2 Nucleotide sequences of VvMYBA1a, VvMYBA1c, VlMYBA1-3a, and VlMYBA1-3b. Gret1, grapevine retrotransposon 1; LTR, long terminal repeat (PPTX 307 kb).

References

  1. Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673CrossRefGoogle Scholar
  2. Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81(3):179–192PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun HI, Cabello F, Ibáñez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15(12):3707–3714PubMedCrossRefPubMedCentralGoogle Scholar
  4. Azuma A (2018) Genetic and environmental impacts on the biosynthesis of anthocyanins in grapes. Hortic J 87:1–17CrossRefGoogle Scholar
  5. Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape skin. Theor Appl Genet 117:1009–1019PubMedCrossRefPubMedCentralGoogle Scholar
  6. Azuma A, Kobayashi S, Goto-Yamamoto N, Shiraishi M, Mitani N, Yakushiji H, Koshita Y (2009) Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka’, a bud sport of ‘Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Sci 176:470–478PubMedCrossRefPubMedCentralGoogle Scholar
  7. Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet 122:1427–1438PubMedCrossRefPubMedCentralGoogle Scholar
  8. Azuma A, Ban Y, Sato A, Kono A, Shiraishi M, Yakushiji H, Kobayashi S (2015) MYB diplotypes at the color locus affect the ratios of tri/di-hydroxylated and methylated/nonmethylated anthocyanins in grape berry skin. Tree Genet Genomes 11:31CrossRefGoogle Scholar
  9. Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114CrossRefGoogle Scholar
  10. Bayo-Canha A, Fernández-Fernández JI, Martínez-Cutillas A, Ruiz-García L (2012) Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186:393–407CrossRefGoogle Scholar
  11. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291PubMedPubMedCentralCrossRefGoogle Scholar
  12. Canaguier A, Grimplet J, Di Gaspero G, Scalabrin SE, Duchêne E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Bérard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Paslier L, Brunel D, Adam-Blondon AF (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62PubMedPubMedCentralCrossRefGoogle Scholar
  13. Castellarin SD, Gaspero GD (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:46PubMedPubMedCentralCrossRefGoogle Scholar
  14. Castellarin SD, Gaspero GD, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3′-hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin−/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12PubMedPubMedCentralCrossRefGoogle Scholar
  15. Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS (2015) New candidate genes for the fine regulation of the colour of grapes. J Exp Bot 66:4427–4440PubMedPubMedCentralCrossRefGoogle Scholar
  16. Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Mérillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511PubMedPubMedCentralCrossRefGoogle Scholar
  17. Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053PubMedPubMedCentralCrossRefGoogle Scholar
  18. Deng JZ, Qu HG (1996) Overview of anthocyanins in Vitis. Sino-Overseas Grapevine Wine 2:25–27Google Scholar
  19. Di Genova A, Almeida AM, Muñoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fournier-Level A, Hugueney P, Verriès C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 11:179PubMedPubMedCentralCrossRefGoogle Scholar
  22. Giannetto S, Velasco R, Troggio M, Malacarne G, Storchi P, Cancellier S, De Nardi B, Crespan M (2008) A PCR-based diagnostic tool for distinguishing grape skin color mutants. Plant Sci 175:402–409CrossRefGoogle Scholar
  23. Goto-Yamamoto N, Mouri H, Azumi M, Edwards KJ (2006) Development of grape microsatellite markers and microsatellite analysis including oriental cultivars. Am J Enol Vitic 57:105–108Google Scholar
  24. Jackman RL, Smith JL (1996) Anthocyanins and betalains. In: Hendry GAF, Houghton JD (eds) Natural food colorants. Springer, BostonGoogle Scholar
  25. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006) Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci 170:61–69CrossRefGoogle Scholar
  27. Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kobayashi S, Goto-Yamamoto N, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-color mutants. J Japan Soc Hort Sci 74:196–203CrossRefGoogle Scholar
  30. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids; a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242PubMedCrossRefPubMedCentralGoogle Scholar
  31. Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P, Du F, Fan P, Mao R, Zhu Y, Deng W, Yang M, Huang H, Liu Y, Ding Y, Liu X, Jiang J, Zhu Y, Li S, He X, Chen W, Dong Y (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10(1):1190PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lijavetzky D, Ruiz-Garcia L, Cabezas JA, de Andres MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Gen Genomics 276:427–435CrossRefGoogle Scholar
  33. Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83PubMedPubMedCentralCrossRefGoogle Scholar
  34. Migliaro D, Crespan M, Muñoz-Organero G, Velasco R, Moser C, Vezzulli S (2014) Structural dynamics at the berry colour locus in Vitis vinifera L. somatic variants. Aust J Grape Wine Res 20:485–495CrossRefGoogle Scholar
  35. Migliaro D, De Nardi B, Vezzulli S, Crespan M (2017) An upgraded core set of 11 SSR markers for grapevine cultivar identification: the case of berry-color mutants. Am J Enol Vitic 68:496–498CrossRefGoogle Scholar
  36. Mitani N, Azuma A, Fukai E, Hirochika H, Kobayashi S (2009) A retrotransposon-inserted VvmybA1a allele has been spread among cultivars of Vitis vinifera but not in north American and east Asian Vitis species. Vitis 48:55–56Google Scholar
  37. Negrul AM (1938) Evolution of cultivated forms of grapes. C R Acad Sci URSS 18:585–588Google Scholar
  38. Ohta S, Yano K, Kurita Y, Kita M, Shimizu T, Nesumi H (2013) A sample preparation method for direct and non-direct PCR in woody plants. J Japan Soc Hort Sci 82:14–21CrossRefGoogle Scholar
  39. R Development Core Team (2016) R: A Language and Environment for Statistical Computing. In: R Foundation for Statistical ComputingGoogle Scholar
  40. Sarni P, Fulcrand H, Souillol V, Souquet JM, Cheynier V (1995) Mechanism of anthocyanin degradation in grape must-like model solutions. J Sci Food Agric 69:385–391CrossRefGoogle Scholar
  41. Sato A, Yamada M, Mitani N, Kono A, Ban Y, Ueno T, Shiraishi M, Onoue N, Iwanami H, Azuma A, Yoshioka M, Mase N, Ito T (2018) A new grape cultivar, ‘grosz krone’. Hort Res (Japan) 17(Suppl 1):296 (in Japanese)Google Scholar
  42. Shinomiya R, Shiraishi M, Hirakawa N, Ibi A, Fujishima H, Chijiwa H, Muramoto K (2017) A new grape cultivar ‘Suzuka’. Bull Fukuoka Agric Res Cent 3:36–42Google Scholar
  43. Shiraishi M, Yamada M, Mitani N, Ueno T (2007) A rapid determination method for anthocyanin profiling in grape genetic resources. J Jpn Soc Hort Sci 76:28–35CrossRefGoogle Scholar
  44. Shirasawa K, Azuma A, Taniguchi F, Yamamoto T, Sato A, Hirakawa H, Isobe S (2019) De novo whole-genome assembly in interspecific hybrid table grape, ‘Shine Muscat’. BioRχiv.  https://doi.org/10.1101/730762
  45. Snyder E (1937) Grape development and improvement. Yrbk of Agric 1937. Washington DC, pp 631–664Google Scholar
  46. Song S, Hernandez MM, Provedo I, Menendez CM (2014) Segregation and associations of enological and agronomic traits in Graciano × Tempranillo wine grape progeny (Vitis vinifera L.). Euphytica 195:259–277CrossRefGoogle Scholar
  47. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755CrossRefGoogle Scholar
  48. Sugiura T, Sumida H, Yokoyama S, Ono H (2012) Overview of recent effects of global warming on agricultural production in Japan. JARQ 46:7–13CrossRefGoogle Scholar
  49. Sugiura T, Sakamoto D, Koshita Y, Sugiura H, Konno S (2017) Impact assessment of global warming on past changes in coloring of grape berry skins by using a model for estimating berry skin coloring. Acta Hortic 1160:341–347CrossRefGoogle Scholar
  50. Sugiura T, Shiraishi M, Konno S, Sato A (2018) Prediction of skin coloration of grape berries from air temperature. Hortic J 87:18–25CrossRefGoogle Scholar
  51. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H (2013) Berry phenolics of grapevine under challenging environments. Int J Mol Sci 14:18711–18739PubMedPubMedCentralCrossRefGoogle Scholar
  52. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730PubMedCrossRefPubMedCentralGoogle Scholar
  53. Vezzulli S, Leonardelli L, Malossini U, Stefanini M, Velasco R, Moser C (2012) Pinot blanc and pinot gris arose as independent somatic mutations of pinot noir. J Exp Bot 63:6359–6369PubMedPubMedCentralCrossRefGoogle Scholar
  54. Walker AR, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785PubMedCrossRefPubMedCentralGoogle Scholar
  55. Winkler AJ, Cook JA, Kliewer WM, Lider LA (1974) General viticulture. University of California Press, BerkleyGoogle Scholar
  56. Yakushiji H, Kobayashi S, Goto-Yamamoto N, Jeong ST, Sueta T, Mitani N, Azuma A (2006) A skin color mutation of grapevine, from black-skinned ‘pinot noir’ to white-skinned ‘pinot Blanc’ is caused by the deletion of the functional VvmybA1 allele. Biosci Biotechnol Biochem 70:1506–1508PubMedCrossRefPubMedCentralGoogle Scholar
  57. Yamada M, Sato A (2016) Advances in table grape breeding in Japan. Breed Sci 66:34–45PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yang S, Fresnedo-Ramirez J, Sun Q, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Fennell AY (2016) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS One 11:e0149560PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea ScienceNational Agriculture and Food Research Organization (NARO)HigashihiroshimaJapan
  2. 2.Department of Intellectual PropertyNational Agriculture and Food Research Organization (NARO)TsukubaJapan

Personalised recommendations