Skip to main content

Advertisement

Log in

Genetics to the rescue: managing forests sustainably in a changing world

  • Short Communication
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

There is growing concern that the implementation of political agreements on climate change and biodiversity will not be enough to protect forests in the short run and up to the end of the 21st century. As mitigation efforts are lagging behind self-imposed, reasonable targets, genetic diversity will have a large and significant part to play in the process of adapting forests to climate change. Genetic diversity, the raw material of evolution, can be used for adaptation by natural selection and artificial breeding, in naturally regenerated and plantation forests alike. The 2-day scientific conference: “#rescueforests: Genetics to the rescue - Managing forests sustainably in a changing world,” addressed the genetic diversity of forests. More specifically, the conference was about natural as well as assisted adaptive processes, their spatial scale, from fine grain to landscape and ecoregions, and how much of the genome it involves. It also dealt with phenotypes and how much of their variation is determined by underlying genetic diversity. And finally, and perhaps most importantly, the conference emphasized the importance of conservation and sustainable use of this genetic diversity as a nature-based solution to adapt under the fast pace of climate change. The conference demonstrated how improved knowledge on genomic diversity and evolutionary mechanisms can help to rescue forests, either naturally or by means of management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Availability of data and material (data transparency)

Not applicable

References

  • Ågren J, Schemske DW (2012) Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range. New Phytol 194:1112–1122. https://doi.org/10.1111/j.1469-8137.2012.04112.x

    Article  PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A (2013) Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics 195:495–512. https://doi.org/10.1534/genetics.113.153783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skrøppa T, Baldinelli G, El-Kassaby YA, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87

    Article  Google Scholar 

  • Aravanopoulos FA, Tollefsrud MM, Graudal L, Koskela J, Kätzel R, Soto A, Nagy L, Pilipovic A, Zhelev P, Božic G, Bozzano M (2015) Development of genetic monitoring methods for genetic conservation units of forest trees in Europe. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome

  • Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755. https://doi.org/10.1038/nrg3031

    Article  CAS  PubMed  Google Scholar 

  • Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genet 10:e1004412. https://doi.org/10.1371/journal.pgen.1004412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482. https://doi.org/10.1080/02827580903418224

    Article  Google Scholar 

  • Bower AD, Aitken SN (2008) Ecological genetics and seed transfer guidelines for Pinus Albicaulis (Pinaceae). Am J Bot 95(1):66–76

    Article  PubMed  Google Scholar 

  • Brown C, Alexander P, Arneth A, Holman I, Rounsevell M (2019) Achievement of Paris climate goals unlikely due to time lags in the land system. Nat Clim Chang 9(3):203–208

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202

    Article  Google Scholar 

  • Chen J, Li L, Milesi P, Jansson G, Berlin M, Karlsson B, Aleksic J, Vendramin GG, Lascoux M (2019) Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol Appl 12:1539–1551. https://doi.org/10.1111/eva.12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauphin B, Wüest RO, Brodbeck S, Zoller S, Fischer MC, Holderegger R, Gugerli F, Rellstab C (2020) Disentangling the effects of geographic peripherality and habitat suitability on neutral and adaptive genetic variation in Swiss stone pine. Mol Ecol 29(11):1972–1989. https://doi.org/10.1111/mec.15467

    Article  CAS  PubMed  Google Scholar 

  • Devaux C, Lande R (2008) Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift. Proc R Soc B 275:2723–2732

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries SMG, Alan M, Bozzano M, Burianek V, Collin E, Cottrell J, Ivankovic M, Kelleher CT, Koskela J, Rotach P, Vietto L and Yrjänä L (2015) Pan-European strategy for genetic conservation of forest trees and establishment of a core network of dynamic conservation units. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome

  • Eckert AJ, Maloney PE, Vogler DR, Jensen CE, Mix AD, Neale DB (2015) Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genet Genomes 11:42

    Article  Google Scholar 

  • Eggermont H, Balian E, Azevedo JMN, Beumer V, Brodin T, Claudet J, Fady B, Grube M, Keune H, Lamarque P, Reuter K, Smith M, van Ham C, Weisser WW, Le Roux X (2015) Nature-based solutions: new influence for environmental management and research in Europe. GAIA – Ecol Perspect Sci Soc 24(4):243–248

    Google Scholar 

  • Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16(4):927–939. https://doi.org/10.1007/s10113-015-0843-9

    Article  Google Scholar 

  • Fréjaville T, Fady B, Kremer A, Ducousso A, Benito Garzón M (2019) Inferring phenotypic plasticity and population responses to climate across tree species ranges using forest inventory data. Glob Ecol Biogeogr 28:1259–1271. https://doi.org/10.1111/geb.12930

    Article  Google Scholar 

  • Gargiulo R, Saubin M, Rizzuto G, West B, Fay F, Kallow S, Trivedi C (2019) Genetic diversity in British populations of Taxus baccata L.: Is the seedbank collection representative of the genetic variation in the wild? Biol Conserv 233:289–297. https://doi.org/10.1016/j.biocon.2019.01.014

    Article  Google Scholar 

  • Gauzere J, Oddou-Muratorio S, Gay L, Klein EK (2016) Partial genotyping at polymorphic markers can improve heritability estimates in sibling groups. Mol Ecol Resour 16:1340–1352

    Article  CAS  PubMed  Google Scholar 

  • Gauzere J, Klein EK, Brendel O, Davi H, Oddou-Muratorio S (2020) Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species. New Phytol 227(2):641–653

    Article  PubMed  Google Scholar 

  • Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 333:83–86. https://doi.org/10.1126/science.1209244

    Article  CAS  Google Scholar 

  • Hoban S, Kallow S, Trivedi C (2018) Implementing a new approach to effective conservation of genetic diversity, with ash (Fraxinus excelsior) in the UK as a case study. Biol Conserv 225:10–21. https://doi.org/10.1016/j.biocon.2018.06.017

    Article  Google Scholar 

  • Hoban S, Stand A (2015) Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol Conserv 187:182–191. https://doi.org/10.1016/j.biocon.2015.04.023

    Article  Google Scholar 

  • Hohenlohe PA, Phillips PC, Cresko WA (2010) Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci 171:1059–1071. https://doi.org/10.1086/656306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karger DN, Conrad O, Bohner J, Kawohl T, Kreft H, Soria-Auza RW et al (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4:20. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  • Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21:1548–1566. https://doi.org/10.1111/j.1365-294X.2012.05479.x

    Article  PubMed  Google Scholar 

  • Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam MJ, Lalagúe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739. https://doi.org/10.1007/s13595-013-0272-1

    Article  Google Scholar 

  • Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS One 3:e4010

    Article  PubMed  PubMed Central  Google Scholar 

  • Lind BM, Friedline CJ, Wegrzyn JL, Maloney PE, Vogler DR, Neale DB, Eckert AJ (2017) Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol 26:3168–3185

    Article  PubMed  Google Scholar 

  • Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ (2018) The genomics of local adaptation in trees: are we out of the woods yet? Tree Genet Genomes 14(2):29

    Article  Google Scholar 

  • Lloret F, Peñuelas J, Prieto P, Llorens L, Estiarte M (2009) Plant community changes induced by experimental climate change: seedling and adult species composition. Perspect Plant Ecol Evol Syst 11:53–63

    Article  Google Scholar 

  • Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24(5):1031–1046. https://doi.org/10.1111/mec.13100

    Article  PubMed  Google Scholar 

  • Martínez-Sancho E, Mateju L, Morganti S, Grefen C, Carvalho B, Dauphin B, Rellstab C, Gugerli F, Opgenoorth L, Heer K, Knutzen F, von Arx G, Valladares F, Cavers S, Fady B, Alia Miranda R, Aravanopoulos F, Avanzi C, Bagnoli F, Barbas E, Bastien C, Benavides R, Bernier F, Bodineau G, Bastias CC, Charpentier JP, Climent JM, Corréard M, Courdier F, Danusevicius D, Farsakoglou M, García del Barrio JM, Gilg O, González-Martínez SC, Gray A, Hartleitner C, Hurel A, Jouineau A, Kärkkäinen K, Kujula S, Labriola M, Lascoux M, Lefebvre M, Lejeune V, Liesebach M, Malliarou E, Mariotte N, Matesanz S, Myking T, Notivol E, Pakull B, Piotti A, Pringarbe M, Pyhajarvi T, Raffin A, Ramirez-Valiente JA, Ramskogler K, Robledo-Arnuncio J, Savolainen O, Schüler S, Semerikov V, Spanu I, Thévenet J, Tollefsrud MM, Turion N, Veisse D, Vendramin G, Villar M, Westin J, Fonti P (2019) The GenTree Dendroecological Collection: tree-ring and wood density data from seven tree species across Europe. Scientific Data 7(1):1

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • McKinney GJ, Waples RK, Seeb LW, Seeb JE (2017) Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour 17:656–669. https://doi.org/10.1111/1755-0998.12613

    Article  CAS  PubMed  Google Scholar 

  • Menon M, Bagley JC, Friedline C, Whipple AV, Schoettle AW, Leal-Saenz A, Wehenkel C, Molina-Freaner F, Flores-Renteria L, Gonzalez-Elizondo MS, Sniezko RA, Cushman SA, Waring KM, Eckert AJ (2018) The role of hybridization during ecological divergence of southwestern white pine (Pinus strobiformis) and limber pine (P. flexilis). Mol Ecol 27:1245–1260

    Article  PubMed  Google Scholar 

  • Milesi P, Berlin M, Chen J, Orsucci M, Li L, Jansson G, Karlsson B, Lascoux M (2019) Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: local adaptation and genetic basis of quantitative traits in trees. Evol Appl 12:1946–1959. https://doi.org/10.1111/eva.12855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB (2019) A reference genome sequence for the European Silver Fir (Abies alba Mill.): a community-generated genomic resource. G3 9(7):2039–2049. https://doi.org/10.1534/g3.119.400083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2020) Massive effort to document the genetics of European forests bears fruit. Science 27:2020. https://doi.org/10.1126/science.abb0632

    Article  Google Scholar 

  • Plumer B, Popovich N (2018) The world still isn’t meeting its climate goals. The New York Times, Dec. 7, 2018. https://www.nytimes.com/interactive/2018/12/07/climate/world-emissions-paris-goals-not-on-track.html

  • Reichstein M, Michael B, Mahecha MD, Kattge J, Baldocchi DD (2014) Linking plant and ecosystem functional biogeography. Proc Natl Acad Sci USA 111:13697–13702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370. https://doi.org/10.1111/mec.13322

    Article  PubMed  Google Scholar 

  • Reutimann O, Gugerli F, Rellstab C (2020) A species-discriminatory single-nucleotide polymorphism set reveals maintenance of species integrity in hybridizing European white oaks (Quercus spp.) despite high levels of admixture. Ann Bot 125(4):663–676. https://doi.org/10.1093/aob/mcaa001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29(3):165–176

    Article  PubMed  Google Scholar 

  • Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820. https://doi.org/10.1038/nrg3522

    Article  CAS  PubMed  Google Scholar 

  • Schelhaas MJ, Nabuurs GJ, Hengeveld G, Reyer C, Hanewinkel M, Zimmermann NE, Cullmann D (2015) Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Reg Environ Chang 15(8):1581–1594. https://doi.org/10.1007/s10113-015-0788-z

    Article  Google Scholar 

  • Truffaut L, Chancerel E, Ducousso A, Dupouey JL, Badeau V, Ehrenmann F, Kremer A (2017) Fine-scale species distribution changes in a mixed oak stand over two successive generations. New Phytol 215:126–139. https://doi.org/10.1111/nph.14561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinceti B, Manica M, Lauridsen N, Verkerk PJ, Lindner M, Fady B (2020) Managing forest genetic resources as a strategy to adapt forests to climate change: perceptions of European forest owners and managers. Eur J For Res 139:1–13. https://doi.org/10.1007/s10342-020-01311-6

    Article  Google Scholar 

  • Yeaman S (2015) Local adaptation by alleles of small effect. Am Nat 186:S74–S89

    Article  PubMed  Google Scholar 

Download references

Funding

This publication is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 676876 (GenTree).

Author information

Authors and Affiliations

Authors

Contributions

BF conceptualized the work and drafted the manuscript. All authors made substantial contributions to the design of the work, revised the draft, wrote, and approved the version that is submitted for publication.

Corresponding author

Correspondence to Bruno Fady.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Ethical approval

The authors approve, and comply to, the journal guidelines.

Consent to participate

All authors agreed with the content of the manuscript and all gave explicit consent to submit to the journal.

Consent for publication

Authors agree to be accountable for all aspects of the work and consent to its publication.

Code availability (software application or custom code)

Not applicable

Data Archiving Statement

Not applicable to this work, no archivable data was used.

Additional information

Communicated by J. Beaulieu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1280 kb)

ESM 2

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fady, B., Aravanopoulos, F., Benavides, R. et al. Genetics to the rescue: managing forests sustainably in a changing world. Tree Genetics & Genomes 16, 80 (2020). https://doi.org/10.1007/s11295-020-01474-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01474-8

Keywords

Navigation