Tree Genetics & Genomes

, 15:84 | Cite as

Hierarchical genetic and spatial structure among varieties and populations of Hymenaea stigonocarpa (Fabaceae) in Brazilian savannah

  • Ramilla dos Santos Braga
  • Rafael Barbosa Pinto
  • Lázaro José Chaves
  • José Alexandre Felizola Diniz-Filho
  • Thannya Nascimento Soares
  • Rosane Garcia Collevatti
  • Mariana Pires de Campos TellesEmail author
Original Article
Part of the following topical collections:
  1. Population structure


Approaches in population genetics decompose species genetic variation at hierarchical level, understanding the action of microevolutionary processes at spatial scales. We evaluated the taxonomically complex species Hymenaea stigonocarpa, a tree species distributed in central Brazil, presenting three botanical varieties weakly distinguished by morphological traits. We aimed to investigate the spatial genetic structure of populations of H. stigonocarpa along Cerrado biome, assessing genetic differentiation and the existence of hybridization zones in this species. We genotyped 901 plants from 28 local populations using nine nuclear microsatellite loci. Analyses of genetic diversity, Bayesian inference estimated genetic differentiation and migration rate among populations and varieties. Mantel tests and sPCA evaluated spatial pattern of genetic variation. We observed that H. stigonocarpa var. brevipetiolata presented larger genetic differentiation compared to H. stigonocarpa var. stigonocarpa and H. stigonocarpa var. pubescens (FCT = 0.175). Bayesian approaches supported a genetic different cluster and hybridization process in sympatric populations for H. stigonocarpa var. brevipetiolata. Migration rate was high and not significantly higher among varieties, confirming the existence of hybridization. Spatial correlations were relatively low, but with exponential decrease of genetic similarity along of the geographic space. Spatial genetic structure was higher for H. stigonocarpa var. brevipetiolata and local structures were found with sPCA, indicating that neighboring populations are genetically different mainly in populations of eastern Cerrado. The genetic clusters are not congruent with the vegetative characters used to recognize the three botanical varieties, which should be viewed with skepticism. Our genetic analyses strongly support the need for a taxonomic review.


Brazilian Cerrado Genetic differentiation Genetic resource Hierarchical AMOVA jatobá-do-cerrado Microsatellite 



Our research has been continuously supported by several grants and fellowships of the research network GENPAC (Geographical Genetics and Regional Planning for Natural Resources in Brazilian Cerrado) from CNPq/FAPEG (projects #563839/2010-4 and #201110267000125), by the CERGEN (Núcleo de Excelência em Recursos Genéticos Vegetais do Cerrado -PRONEX/FAPEG/CNPq 07-2012), PRONEM FAPEG -  Process 201710267000539 and by the CNPq/Universal project 447754/2014-9. We thank Systema Naturae for Environmental Consultant for helping with field work. Our study has also been developed in the context of the National Institutes for Science and Technology in Ecology, Evolution and Biodiversity Conservation (INCT_EECBio), supported by MCTIC/CNPq (process #465610/2014-5) and FAPEG, in addition to support from PPGS CAPES/FAPEG (Public Call #08/2014). R.S. Braga was supported by fellowships from CAPES. L.J. Chaves, T.N. Soares, R.G. Collevatti, and M.P.C. Telles were supported by productivity grants from CNPq.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Data will be deposited in the Dryad repository ( after acceptance for review.

Supplementary material

11295_2019_1398_MOESM1_ESM.xlsx (27 kb)
ESM 1 (XLSX 26 kb)
11295_2019_1398_MOESM2_ESM.xlsx (32 kb)
ESM 2 (XLSX 31 kb)
11295_2019_1398_MOESM3_ESM.docx (735 kb)
ESM 3 (DOCX 734 kb)


  1. Aguiar LMS, Bernard E, Machado RB (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera : Phyllostomidae) in a Neotropical savannah. Zoologia 31:223–229. CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedPubMedCentralGoogle Scholar
  3. Antiqueira LMOR (2013) Application of microsatellite molecular markers in studies of genetic diversity and conservation of plant species of Cerrado. J Plant Sci 1:1–5. CrossRefGoogle Scholar
  4. Baena-Díaz F, Ramírez-Barahona S, Ornelas JF (2018) Hybridization and differential introgression associated with environmental shifts in a mistletoe species complex. Sci Rep 8:5591. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ballesteros-Mejia L, Lima NE, Lima-Ribeiro MS, Collevatti RG (2016) Pollination mode and mating system explain patterns in genetic differentiation in Neotropical plants. PLoS One 11:e0158660. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balloux F, Lugon-Moulin N, Hausser J (2000) Estimating gene flow across hybrid zones: how reliable are microsatellites? Acta Theriol (Warsz) 45:93–101CrossRefGoogle Scholar
  7. Barbosa AC d OF, Collevatti RG, Chaves LJ et al (2015) Range-wide genetic differentiation of Eugenia dysenterica (Myrtaceae) populations in Brazilian Cerrado. Biochem Syst Ecol 59:288–296. CrossRefGoogle Scholar
  8. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bentham G (1870) Leguminosae II et III: Swartzieae, Caesalpinieae, Mimoseae. In: Martius CFP, Eichler AG (eds) Flora Brasiliensis 15(2). F. Fleisher, Lipsiae, Munich, p 527Google Scholar
  10. Boaventura-novaes CRD, Novaes E, Mota EES et al (2018) Genetic drift and uniform selection shape evolution of most traits in Eugenia dysenterica DC. (Myrtaceae). Tree Genet Genomes.
  11. Buonamici A, Cavers S, Vendramin GG (2008) Microsatellite loci isolated from the tropical tree Hymenaea courbaril L. (Fabaceae). Mol Ecol Resour 8:1020–1022. CrossRefPubMedGoogle Scholar
  12. Cavallari MM, Gimenes MA, Billot C, Torres RB, Zucchi MI, Cavalheiro AJ, Bouvet JM (2010) Population genetic relationships between Casearia sylvestris (Salicaceae) varieties occurring sympatrically and allopatrically in different ecosystems in south-east Brazil. Ann Bot 106:627–636. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ciampi AY, Azevedo VCR, Gaiotto FA et al (2008) Isolation and characterization of microsatellite loci for Hymenaea courbaril and transferability to Hymenaea stigonocarpa, two tropical timber species. Mol Ecol Resour 8:1074–1077. CrossRefPubMedGoogle Scholar
  14. Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356CrossRefGoogle Scholar
  15. Collevatti RG, Lima JS, Soares TN, Telles MPDC (2010) Spatial genetic structure and life history traits in Cerrado tree species: inferences for conservation. Natureza Conservação 8:54–59. CrossRefGoogle Scholar
  16. Collevatti RG, Telles MPC, Nabout JC, Chaves LJ, Soares TN (2013) Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas. Heredity (Edinb) 111:97–105. CrossRefGoogle Scholar
  17. Collevatti RG, Olivatti AM, Telles MPC, Chaves LJ (2016) Gene flow among Hancornia speciosa (Apocynaceae) varieties and hybrid fitness. Tree Genet Genomes 12:74–12. CrossRefGoogle Scholar
  18. Collevatti RG, Rodrigues EE, Vitorino LC, Lima-Ribeiro MS, Chaves LJ, Telles MPC (2018) Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes. Ann Bot 00:1–12. CrossRefGoogle Scholar
  19. Cottrell JE, Munro RC, Tabbener HE, Milner AD (2003) Comparison of fine-scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history. For Ecol Manag 176:287–303CrossRefGoogle Scholar
  20. de Moraes MLT, Sebbenn AM (2011) Pollen dispersal between isolated trees in the Brazilian Savannah : a case study of the Neotropical tree Hymenaea stigonocarpa. Biotropica 43:192–199CrossRefGoogle Scholar
  21. Defavari GR, Tarazi R, Moreno MA (2009) Estrutura genética espacial intrapopulacional de Hymenaea stigonocarpa Mart . Ex Hayne na Estação Ecológica de Itirapina, SP. Sci For 37:89–98Google Scholar
  22. Diniz-Filho JAF, Bini LM (2012) Thirty-five years of spatial autocorrelation analysis in population genetics: an essay in honour of Robert Sokal (1926-2012). Biol J Linn Soc 107:721–736. CrossRefGoogle Scholar
  23. Diniz-Filho JAF, De Campos Telles MP, Bonatto SL et al (2008) Mapping the evolutionary twilight zone: molecular markers, populations and geography. J Biogeogr 35:753–763. CrossRefGoogle Scholar
  24. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de Campos Telles MP, Rangel TF, Bini LM (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Diniz-filho JAF, Soares TN, Telles MP d C (2014) Pattern-oriented modelling of population genetic structure. Biol J Linn Soc 113:1152–1161CrossRefGoogle Scholar
  26. Diniz-Filho JAF, Barbosa ACOF, Collevatti RG et al (2016) Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. J Biogeogr 43:167–177. CrossRefGoogle Scholar
  27. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  28. Drummond CS, Hamilton M (2007) Hierarchical components of genetic variation at a species boundary : population structure in two sympatric varieties of Lupinus microcarpus (Leguminosae). Mol Ecol 16:753–769. CrossRefPubMedGoogle Scholar
  29. Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst 143:528–542. CrossRefGoogle Scholar
  30. El Mousadik A, Petit R (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  31. Epperson BK (2003) Geographical genetics. Princeton University Press, PrincetonCrossRefGoogle Scholar
  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. CrossRefGoogle Scholar
  33. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351CrossRefGoogle Scholar
  34. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 491:479–491Google Scholar
  35. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50. CrossRefGoogle Scholar
  36. Flora do Brasil 2020 (in construction) Jardim Botânico do Rio de Janeiro. >. Accessed 06 Jan 2018
  37. Gibbs PE, Oliveira PE, Bianchi MB (1999) Postzygotic control of selfing in Hymenaea stigonocarpa (Leguminosae - Caesalpinioideae ), a bat - pollinated tree of the Brazilian Cerrados. Int J Plant Sci 160:72–78CrossRefGoogle Scholar
  38. Goudet J (1995) FSTAT (Version 1 . 2): a computer program to calculate F-Statistics. J Hered 86:485CrossRefGoogle Scholar
  39. Hardy O, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. CrossRefGoogle Scholar
  40. Hartl DL, Clark AG (1997) Principles of population genetics. Sinauer associates SunderlandGoogle Scholar
  41. Hayne FG (1830) Getreue Darstell. Gew. 11:6–19Google Scholar
  42. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683. CrossRefPubMedGoogle Scholar
  43. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. CrossRefGoogle Scholar
  44. Jombart T, Devillard S, Dufour A, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity (Edinb) 101:92–103. CrossRefGoogle Scholar
  45. Kodoma M, Sartori A (2007) Caracterização morfológica de plântulas de Hymenaea stigonocarpa var. stigonocarpa Mart. ex Hayne, H. stigonocarpa Hayne var. brevipetiolata N. Mattos e H. courbaril L. Rev Bras Biociências 5:663–665Google Scholar
  46. Lee YT, Langenheim JH (1975) Systematics of the genus Hymenaea L., Leguminosae, Caesalpinioideae, Detarieae. University of California Publications Press, BerkeleyGoogle Scholar
  47. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over internet from
  48. Lewontin RC (1985) Population genetics. Annu Rev Genet 19:81–102CrossRefGoogle Scholar
  49. Lima JS, Telles MPC, Chaves LJ, Lima-Ribeiro MS, Collevatti RG (2017) Demographic stability and high historical connectivity explain the diversity of a savanna tree species in the quaternary. Ann Bot 119:645–657. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Manly BJF (1985) Statistics of natural selection. Chapman & Hall, LondonGoogle Scholar
  51. Medrano M, López-Perea E, Herrera CM (2014) Population genetics methods applied to a species delimitation problem: endemic trumpet daffodils (Narcissus section Pseudonarcissi) from the southern Iberian Peninsula. Int J Plant Sci 175:501–517. CrossRefGoogle Scholar
  52. Mendonça R, Felfili JM, Walter BM, Silva MC, Rezende AV, Filgueiras TS, Nogueira PEN, Fagg CW (2008) Flora vascular do Bioma Cerrado: checklist com 12.356 espécies. In: Sano S, Almeida P, Ribeiro JF (eds) Cerrado: ecologia e flora. EMBRAPA Informação Tecnológica, Brasília, pp 422–442Google Scholar
  53. Minder AM, Widmer A (2008) A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 17:1552–1563. CrossRefPubMedGoogle Scholar
  54. Moraes MLT, Kageyama PY, Sebbenn AM (2007) Sistema de reprodução em pequenas populações fragmentadas e em árvores isoladas de Hymenaea stigonocarpa. Sci For 74:75–86Google Scholar
  55. Moraes MA, Kubota TYK, Silva ECB et al (2016) Mendelian inheritance, linkage, and genotypic disequilibrium in microsatellite loci of Hymenaea stigonocarpa Mart. ex Hayne (Fabaceae-Caesalpinioideae). Genet Mol Res 15(13):gmr.15038629. CrossRefGoogle Scholar
  56. Moraes MA, Kubota TYK, Rossini BC et al (2018) Long-distance pollen and seed dispersal and inbreeding depression in Hymenaea stigonocarpa (Fabaceae : Caesalpinioideae) in the Brazilian savannah. Ecol Evol 1–17. CrossRefGoogle Scholar
  57. Moreno MA, Tarazi R, Ferraz EM et al (2009) Estrutura genética espacial em populações de Hymenaea stigonacarpa Mart. ex Hayne mediante a utilização de marcadores microssatélites cloroplastidiais. Sci For 37:513–523Google Scholar
  58. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. CrossRefGoogle Scholar
  59. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  60. Pennington RT, Richardson JE, Lavin M (2006) Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol 172:605–616CrossRefGoogle Scholar
  61. Pinto RB (2017) Systematic studies in the Hymenaea clade and a taxonomic revision of the genus Hymenaea L. (Leguminosae, Detarioideae). Ph.D. thesis, Universidade Estadual de CampinasGoogle Scholar
  62. Porras-Hurtado L, Ruiz Y, Santos C et al (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:1–13. CrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. CrossRefPubMedPubMedCentralGoogle Scholar
  64. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  65. Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of quaternary climate changes in the Brazilian cerrado. Ann Bot 100:1219–1228. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ramos ACS, De Lemos-Filho JP, Lovato MB (2009) Phylogeographical structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Hered 100:206–216. CrossRefPubMedGoogle Scholar
  67. Resende-Moreira LC, Ramos ACS, Scliar MO, Silva RM, Azevedo VCR, Ciampi AY, Lemos-Filho JP, Lovato MB (2017) Gene flow between vicariant tree species: insights into savanna-forest evolutionary relationships. Tree Genet Genomes 13:36–15. CrossRefGoogle Scholar
  68. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  69. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci 106(48):20359–20364. CrossRefPubMedGoogle Scholar
  70. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  71. Small RL, Cronn RC, Wendef JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170CrossRefGoogle Scholar
  72. Sokal RR, Oden NL (1978a) Spatial autocorrelation in biology 1. Methodology. Biol J Linn Soc 10:199–228CrossRefGoogle Scholar
  73. Sokal RR, Oden NL (1978b) Spatial autocorrelation in biology 2. Some biological implications and fourapplications of evolutionary and ecological interest. Biol J Linn Soc 10:229–249CrossRefGoogle Scholar
  74. Song S, Dey DK, Holsinger KE (2007) Differentiation among populations with migration, mutation, and drift: implications for genetic inference. Evolution 60:1–12CrossRefGoogle Scholar
  75. Souza IM, Pinto RB, de Queiroz LP (2016) Proposal to conserve the name Hymenaea stigonocarpa (Leguminosae) with a conserved type. Taxon 65:393–394CrossRefGoogle Scholar
  76. Telles MP d C, Dobrovolski R, Souza K d S et al (2014) Disentangling landscape effects on population genetic structure of a Neotropical savanna tree. Nat Conserv 12:65–70. CrossRefGoogle Scholar
  77. Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. CrossRefGoogle Scholar
  78. Werneck F (2011) The diversification of eastern south American open vegetation biomes: historical biogeography and perspectives. Quat Sci Rev 30:1630–1648. CrossRefGoogle Scholar
  79. Wright S (1951) The genetical structure of populations. Ann Eugenics 15:322–354. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ramilla dos Santos Braga
    • 1
  • Rafael Barbosa Pinto
    • 1
  • Lázaro José Chaves
    • 2
  • José Alexandre Felizola Diniz-Filho
    • 3
  • Thannya Nascimento Soares
    • 1
  • Rosane Garcia Collevatti
    • 1
  • Mariana Pires de Campos Telles
    • 1
    • 4
    Email author
  1. 1.Laboratório de Genética & Biodiversidade, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Escola de AgronomiaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de CP 131GoiâniaBrazil
  4. 4.Escola de Ciências Agrárias e BiológicasPontifícia Universidade Católica de GoiásGoiâniaBrazil

Personalised recommendations