Tree Genetics & Genomes

, 15:69 | Cite as

From mass selection to genomic selection: one century of breeding for quantitative yield components of oil palm (Elaeis guineensis Jacq.)

  • Achille Nyouma
  • Joseph Martin Bell
  • Florence Jacob
  • David CrosEmail author
Part of the following topical collections:
  1. Breeding


More efficient methods are required to breed oil palm (Elaeis guineensis Jacq.) for yield maximization in order to meet the increased demand for palm oil while limiting environmental impacts. This review article analyzes the evolution of breeding schemes for oil palm yield and its quantative components and the changes expected to take place with genomic selection (GS). Genetic improvement of oil palm yield started in the 1920s through mass selection. Later, several disruptive improvements dramatically increased the rate of genetic progress: (1) understanding the heredity of fruit form and the adoption of tenera, with thicker mesocarp, in plantations; (2) the discovery of hybrid vigor and the adoption of modified reciprocal recurrent selection; and (3) clonal selection, exploiting intra-hybrid variability. In addition, the use of linear mixed models to estimate genetic values has made selection more efficient. Today, GS appears to be a new disruptive improvement that can speed up breeding schemes by avoiding field trials in some cycles and increase selection intensity by evaluating more candidates. The genetic potential for oil palm yield has increased considerably over one century of breeding. GS is expected to bring the rate of genetic progress to a previously unprecedented level. The future studies on oil palm GS will aim at making it efficient for all yield components. For this purpose, they should focus in particular on the optimization of training populations and on the improvement of prediction models. Minimizing environmental impacts will also require improvement in other aspects (resistance to diseases, cultural practices, etc.).


Elaeis guineensis Hybrids Reciprocal recurrent selection Genomic selection BLUP Linear mixed model 



We thank Facundo Muñoz (CIRAD) for help with the breedR package and anonymous reviewers for their useful comments.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. Arolu IW, Rafii MY, Marjuni M et al (2016) Genetic variability analysis and selection of pisifera palms for commercial production of high yielding and dwarf oil palm planting materials. Ind Crop Prod 90:135–141. CrossRefGoogle Scholar
  2. Baumung R, Sölkner J, Essl A (1997) Correlation between purebred and crossbred performance under a two-locus model with additive by additive interaction. J Anim Breed Genet 114:89–98. CrossRefPubMedGoogle Scholar
  3. Beirnaert A, Vanderweyen R (1941) Contribution à l’étude génétique et biométrique des variétiés d’Elaeis guineensis Jacq. Publ Inst Nat Etude Agron Congo Belge Ser Sci 27:1–101Google Scholar
  4. Billotte N, Jourjon M, Marseillac N et al (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687CrossRefGoogle Scholar
  5. Breure C, Bos I (1992) Development of elite families in oil palm (Elaeis guineensis Jacq.). Euphytica 64:99–112Google Scholar
  6. Breure CJ, Verdooren LR (1995) Guidelines for testing and selecting parent palms in oil palm, practical aspects and statistical methods. ASD Oil Palm Pap 9:68Google Scholar
  7. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097CrossRefGoogle Scholar
  8. Butler D, Cullis BR, Gilmour A, Gogel B (2009) ASReml-R reference manual. State Qld Dep Prim Ind Fish Brisb, Brisbane City 398 pGoogle Scholar
  9. Cappa EP, de Lima BM, da Silva-Junior OB et al (2019) Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP. Plant Sci:284, 9–215CrossRefGoogle Scholar
  10. Cochard B (2008) Etude de la diversité génétique et du déséquilibre de liaison au sein de populations améliorées de palmier à huile (Elaeis guineensis Jacq.). Thèse de Doctorat, Montpellier SupAgroGoogle Scholar
  11. Cochard B, Durand-Gasselin T, PalmElit S (2018) Advances in conventional breeding techniques for oil palm. In: Achieving sustainable cultivation of oil palm, vol 1. Burleigh Dodds Science Publishing, pp 133–160Google Scholar
  12. Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agron J 41:360–367CrossRefGoogle Scholar
  13. Corley R (2009) How much palm oil do we need? Environ Sci Pol 12:134–139CrossRefGoogle Scholar
  14. Corley R, Law I (1997) The future for oil palm clones. In: Proc Int. Planters Conf. Incorp. Soc. Kuala Lumpur, pp 279–289Google Scholar
  15. Corley R, Tinker P (2016) The oil palm, 5th edn. Wiley-Blackwell, Chichester, p 680Google Scholar
  16. Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One 11:e0156744CrossRefGoogle Scholar
  17. Cros D (2014) Etude des facteurs contrôlant l’efficacité de la sélection génomique chez le palmier à huile (Elaeis guineensis Jacq.). Montpellier SupAgro, Montpellier 204 pGoogle Scholar
  18. Cros D, Sánchez L, Cochard B et al (2014) Estimation of genealogical coancestry in plant species using a pedigree reconstruction algorithm and application to an oil palm breeding population. Theor Appl Genet 127:981–994. CrossRefPubMedGoogle Scholar
  19. Cros D, Denis M, Bouvet J-M, Sánchez L (2015a) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16:651CrossRefGoogle Scholar
  20. Cros D, Denis M, Sánchez L et al (2015b) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410. CrossRefPubMedGoogle Scholar
  21. Cros D, Bocs S, Riou V et al (2017) Genomic preselection with genotyping-by-sequencing increases performance of commercial oil palm hybrid crosses. BMC Genomics 18:839. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cros D, Tchounke B, Nkague-Nkamba L (2018) Training genomic selection models across several breeding cycles increases genetic gain in oil palm in silico study. Mol Breed 38:89. CrossRefGoogle Scholar
  23. Cros D, Mbo-Nkoulou L, Bell JM, et al (Under review) Within-family genomic selection in rubber tree increases genetic gain for rubber production. CrossRefGoogle Scholar
  24. Davidson L (1993) Management for efficient cost-effective and productive oil palm plantations. In: Basiron Y et al (eds) Proc. 1991 PORIM Int. Oil Palm Conf. Agriculture. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 153–167Google Scholar
  25. de Carvalho ADF, Fritsche Neto R, Geraldi IO (2008) Estimation and prediction of parameters and breeding values in soybean using REML/BLUP and least squares. Crop Breed Appl Biotechnol 8:219–224CrossRefGoogle Scholar
  26. De Los Campos G, Naya H, Gianola D et al (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385CrossRefGoogle Scholar
  27. de los Campos G, Hickey JM, Pong-Wong R et al (2013) Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327–345CrossRefGoogle Scholar
  28. De Souza C (1992) Interpopulation genetic variances and hybrid breeding programs. Rev Bras Genet 15:643–643Google Scholar
  29. Demol J (2002) Amélioration des plantes: application aux principales espèces cultivées en régions tropicales. Presses Agronomiques de Gembloux, Belgique, p 581Google Scholar
  30. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B Methodol:1–38Google Scholar
  31. Domonhédo H, Cros D, Nodichao L et al (2018) Enjeux et amélioration de la réduction de l’acidité dans les fruits mûrs du palmier à huile, Elaeis guineensis Jacq. (synthèse bibliographique). Biotechnol Agron Soc Environ 22:1Google Scholar
  32. Durán R, Isik F, Zapata-Valenzuela J et al (2017) Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genet Genomes 13:74CrossRefGoogle Scholar
  33. Durand-Gasselin T, Kouame RK, Cochard B et al (2000) Diffusion variétale du palmier à huile (Elaeis guineensis Jacq.). Ol Corps Gras Lipides 7:207–214CrossRefGoogle Scholar
  34. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255CrossRefGoogle Scholar
  35. Falconer D, Mackay T (1996) Introduction to quantitative genetics, 4th edn. Longman, HarlowGoogle Scholar
  36. Gallais A (2011) Méthodes de création de variétés en amélioration des plantes. Quae, Versailles 280 pGoogle Scholar
  37. Gascon J, De Berchoux C (1964) Caractéristiques de la production de quelques origines d’Elaeis guineensis (Jacq.) et de leurs croisements: application à la sélection du palmier à huile. Oléagineux 19:75–84Google Scholar
  38. Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics:1440–1450Google Scholar
  39. Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Genomics of plant genetic resources. Springer, Berlin, pp 651–682CrossRefGoogle Scholar
  40. Habier D, Fernando R, Dekkers J (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397CrossRefGoogle Scholar
  41. Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186CrossRefGoogle Scholar
  42. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12CrossRefGoogle Scholar
  43. Henderson CR (1950) Estimation of genetic parameters. International Biometric Soc, Washington, DC, pp 186–187Google Scholar
  44. Henderson C (1984) Applicatıons of lınear models ın animal breedıng. Univ Guelph Press Guelph 11:652–653Google Scholar
  45. Hu X (2015) A comprehensive comparison between ANOVA and BLUP to valuate location-specific genotype effects for rape cultivar trials with random locations. Field Crop Res 179:144–149CrossRefGoogle Scholar
  46. Ithnin M, Xu Y, Marjuni M et al (2017) Multiple locus genome-wide association studies for important economic traits of oil palm. Tree Genet Genomes 13:103. CrossRefGoogle Scholar
  47. Jacob F, Cros D, Cochard B, Durand-Gasselin T (2017) Agrigenomics in the breeder’s toolbox: latest advances towards an optimal implementation of genomic selection in oil palm. In: International Seminar on 100 Years of Technological Advancement in Oil Palm Breeding & Seed Production. ISOPB conference, 13 November 2017, KLCC, Kuala Lumpur, p 21Google Scholar
  48. Jacquemard JC, Baudoin L, Noiret JM (1997) Le palmier à huile. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) L’amélioration des plantes tropicales. CIRAD et ORSTOM, Paris, pp 507–531Google Scholar
  49. Junaidah J, Rafii M, Chin C, Saleh G (2011) Performance of Tenera oil palm population derived from crosses between deli Dura and Pisifera from different sources on inland soils. J Oil Palm Res 23:1210–1221Google Scholar
  50. Kwong QB, Teh CK, Ong AL et al (2016) Development and validation of a high-density SNP genotyping array for African oil palm. Mol Plant 9:1132–1141. CrossRefPubMedGoogle Scholar
  51. Kwong QB, Ong AL, Teh CK et al (2017a) Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci Rep 7:2872. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kwong QB, Teh CK, Ong AL et al (2017b) Evaluation of methods and marker systems in genomic selection of oil palm (Elaeis guineensis Jacq.). BMC Genet 18:107CrossRefGoogle Scholar
  53. Lorenz AJ, Chao S, Asoro FG et al (2011) Genomic selection in plant breeding: knowledge and prospects. In: Sparks DL (ed) Advances in Agronomy. Academic, Cambridge, pp 77–123Google Scholar
  54. Marchal A, Legarra A, Tisné S et al (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36:1–13. CrossRefGoogle Scholar
  55. Masani MYA, Izawati AMD, Rasid OA, Parveez GKA (2018) Biotechnology of oil palm: current status of oil palm genetic transformation. Biocatal Agric Biotechnol 15:335–347. CrossRefGoogle Scholar
  56. Meunier J, Gascon J (1972) Le schéma général d’amélioration du palmier à huile à l’IRHO. Oléagineux 27:1–12Google Scholar
  57. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  58. Mrode RA (2005) Linear models for the prediction of animal breeding values, 2nd edn. CABI, Oxfordshire, p 344CrossRefGoogle Scholar
  59. Muñoz F, Sanchez L (2018) breedR: statistical methods for forest genetic resources analysts. Accessed Sept 2018
  60. Muranty H, Jorge V, Bastien C et al (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10:1491–1510CrossRefGoogle Scholar
  61. Noh A, Rafii M, Saleh G et al (2012) Genetic performance and general combining ability of oil palm Deli dura x AVROS pisifera tested on inland soils. Sci World J 2012Google Scholar
  62. Nouy B, Jacquemard J-C, Suryana E, et al (2006) The expected and observed characteristics of several oil palm (#Elaeis guineensis# Jacq.) clones. In: IOPRI (ed). s.n., public, p 17Google Scholar
  63. Okoye M, Okwuagwu C, Uguru M (2009) Population improvement for fresh fruit bunch yield and yield components in oil palm (Elaeis guineensis Jacq.). Am Eurasian J Sci Res 4:59–63Google Scholar
  64. Okwuagwu C, Okoye MN, Okolo E et al (2008) Genetic variability of fresh fruit bunch yield in Deli/dura x tenera breeding populations of oil palm (Elaeis guineensis Jacq.) in Nigeria. J Trop Agric 46:52–57Google Scholar
  65. Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533CrossRefGoogle Scholar
  66. Ooi LC-L, Low E-TL, Abdullah MO et al (2016) Non-tenera contamination and the economic impact of SHELL genetic testing in the Malaysian independent oil palm industry. Front Plant Sci 7:771CrossRefGoogle Scholar
  67. Oraguzie NC, Rikkerink EHA, Gardiner SE, de Silva HN (2007) Association Mapping in Plants. Springer, BerlinCrossRefGoogle Scholar
  68. Pérez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the Bayesian linear regression package in R. Plant Genome 3:106–116CrossRefGoogle Scholar
  69. Piepho H, Möhring J, Melchinger A, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228CrossRefGoogle Scholar
  70. Pootakham W, Jomchai N, Ruang-areerate P et al (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105:288–295CrossRefGoogle Scholar
  71. Potier F, Nouy B, Flori A, et al (2006) Yield potential of oil palm (Elaeis guineensis Jacq) clones: preliminary results observed in the Aek Loba genetic block in Indonesia. Int.Soc. Oil Palm Breeders Symp. ‘Yield potential in oil palm II’, Phuket, Thailand, 27–28 NovGoogle Scholar
  72. Pszczola M, Strabel T, Mulder H, Calus M (2012) Reliability of direct genomic values for animals with different relationships within and to the reference population. J Dairy Sci 95:389–400CrossRefGoogle Scholar
  73. Purba AR, Flori A, Baudouin L, Hamon S (2001) Prediction of oil palm (Elaeis guineensis, Jacq.) agronomic performances using the best linear unbiased predictor (BLUP). Theor Appl Genet 102:787–792CrossRefGoogle Scholar
  74. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Accessed Sept 2018
  75. Rafii MY, Isa ZA, Kushairi A et al (2013) Variation in yield components and vegetative traits in Malaysian oil palm (Elaeis guineensis jacq.) dura×pisifera hybrids under various planting densities. Ind Crop Prod 46:147–157. CrossRefGoogle Scholar
  76. Rincent R, Laloë D, Nicolas S et al (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728CrossRefGoogle Scholar
  77. Rincent R, Charcosset A, Moreau L (2017) Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theor Appl Genet:1–17Google Scholar
  78. Rival A, Levang P (2014) Palms of controversies: oil palm and development challenges. CIFOR, Jakarta 58 pGoogle Scholar
  79. Schnell F, Cockerham C (1992) Multiplicative vs. arbitrary gene action in heterosis. Genetics 131:461–469PubMedPubMedCentralGoogle Scholar
  80. Singh R, Low E-TL, Ooi LC-L et al (2013) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500:340CrossRefGoogle Scholar
  81. Soh A (1994) Ranking parents by best linear unbiased prediction (BLUP) breeding values in oil palm. Euphytica 76:13–21CrossRefGoogle Scholar
  82. Soh A (1999) Breeding plans and selection methods in oil palm. In: Symposium on the science of oil palm breeding. In: Proc. Seminar Science of oil palm breeding. PORIM, MontpellierGoogle Scholar
  83. Soh A, Gan H, Wong G et al (2003a) Oil palm genetic improvement. Plant Breed Rev 22:165–220Google Scholar
  84. Soh A, Wong G, Hor T et al (2003b) Estimates of within family genetic variability for clonal selection in oil palm. Euphytica 133:147–163CrossRefGoogle Scholar
  85. Soh AC, Wong CK, Ho YW, Choong CW (2010) Oil palm. In: Vollmann J, Rajcan I (eds) Oil Crops. Springer New York, New York, pp 333–367Google Scholar
  86. Soh AC, Mayes S, Roberts JA (2017) Oil palm breeding: genetics and genomics. CRC Press, Boca Raton, p 446CrossRefGoogle Scholar
  87. Stuber C, Cockerham CC (1966) Gene effects and variances in hybrid populations. Genetics 54:1279PubMedPubMedCentralGoogle Scholar
  88. Ting N-C, Mayes S, Massawe F et al (2018) Putative regulatory candidate genes for QTL linked to fruit traits in oil palm (Elaeis guineensis Jacq.). Euphytica 214:214. CrossRefGoogle Scholar
  89. Tisné S, Denis M, Cros D et al (2015) Mixed model approach for IBD-based QTL mapping in a complex oil palm pedigree. BMC Genomics 16:798CrossRefGoogle Scholar
  90. USDA (2018) Oilseeds: world market and trade. Foreign Agricultural Service, Circular Series November 2018. Accessed Nov 2018
  91. VanRaden PM (2007) Genomic measures of relationship and inbreeding. Interbull Bull 37:33–36Google Scholar
  92. Varshney RK, Roorkiwal M, Sorrells ME (2017) Genomic selection for crop improvement, 1st edn. Springer International Publishing, Cham 258 pCrossRefGoogle Scholar
  93. Vitezica ZG, Varona L, Elsen J-M et al (2016) Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs. Genet Sel Evol 48:6. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Wang Y, Lin G, Li C, Stothard P (2016) Genotype imputation methods and their effects on genomic predictions in cattle. Springer Sci Rev 4:79–98. CrossRefGoogle Scholar
  95. Wei M, Van der Werf JHJ, Brascamp EW (1991) Relationship between purebred and crossbred parameters. J Anim Breed Genet 108:262–269. CrossRefGoogle Scholar
  96. White TL, Hodge GR (1989) Predicting breeding values with applications in forest tree improvement. Springer Netherlands, Dordrecht 367 pCrossRefGoogle Scholar
  97. Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS (2017) Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci 5:309–327. CrossRefPubMedGoogle Scholar
  98. Wong C, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824CrossRefGoogle Scholar
  99. Xavier A, Muir WM, Craig B, Rainey KM (2016) Walking through the statistical black boxes of plant breeding. Theor Appl Genet 129:1933–1949CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.CETIC (African Center of Excellence in Information and Communication Technologies)University of Yaoundé IYaoundéCameroon
  3. 3.PalmElit SASMontferrier sur LezFrance
  4. 4.CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAPMontpellierFrance
  5. 5.AGAP, CIRAD, INRA, Montpellier SupAgroUniversity of MontpellierMontpellierFrance

Personalised recommendations