Advertisement

Geographical patterns of variation in susceptibility of Eucalyptus globulus and Eucalyptus obliqua to myrtle rust

  • Wilson Thau Lym YongEmail author
  • Peter K. Ades
  • Gerd Bossinger
  • Fatima Akter Runa
  • Karanjeet S. Sandhu
  • Brad M. Potts
  • Josquin F. G. Tibbits
Original Article
  • 75 Downloads
Part of the following topical collections:
  1. Disease Resistance

Abstract

Myrtle rust, caused by the pathogen Austropuccinia psidii, is a disease affecting numerous species of Myrtaceae around the globe. Many Australian ecosystems are dominated by Myrtaceae, making them, along with the industries that rely on them, particularly vulnerable to this disease. With over 800 endemic species, Eucalyptus is a major genus within the Myrtaceae in Australia. Wide variation in response to A. psidii infection, from extreme susceptibility to resistance, has been reported among Eucalyptus species in which any pre-formed resistance to this invasive pathogen is unexpected. This study aims to define and contrast geographical patterns of variation in rust susceptibility within the overlapping, natural ranges of Eucalyptus globulus and Eucalyptus obliqua, two commercially and ecologically important species from different Eucalyptus subgenera. Phenotypic disease screening of seedlings of E. globulus races and E. obliqua forest districts (defined geographically) showed E. obliqua to be more susceptible than E. globulus with significant differences in disease susceptibility and symptomatic trait expression. Eucalyptus globulus showed a trend for decreased susceptibility to A. psidii from south- to north-eastern Tasmania, eastwards along the Otway Ranges and southward from the Strzelecki Ranges to the Wilson Promontory Lighthouse in Victoria, but no such geographical patterns were observed within E. obliqua. No significant correlations were found between climatic conditions (i.e. rainfall, temperature and elevation) and rust susceptibility at provenance levels in either species. Taken together, these results support a hypothesis that population divergence in resistance to A. psidii has not been driven by climate.

Keywords

Austropuccinia psidii Climatic conditions Geographical variation Mixed effects analysis Disease resistance Rust susceptibility 

Notes

Acknowledgements

The authors would like to thank Alice Gower, Hossein Valipour Kahrood and Sara Ohadi for their excellent technical support and Robert Park for having made available the specialised rust glasshouse facilities at the University of Sydney.

Funding information

This project was supported by Australian Research Council ARC-Linkage Project LP13010045 and associated partners. W.T.L. Yong received a scholarship from the Malaysian government via the Academic Training Scheme of Public Higher Education Institutions (Skim Latihan Akademik Institut Pengajian Tinggi Awam, SLAI).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Data are provided as supplementary material

Supplementary material

11295_2019_1338_MOESM1_ESM.xlsx (391 kb)
ESM 1 Results of myrtle rust screening for Eucalyptus globulus (XLSX 390 kb)
11295_2019_1338_MOESM2_ESM.xlsx (71 kb)
ESM 2 Results of myrtle rust screening for Eucalyptus obliqua (XLSX 70 kb)

References

  1. Alfenas AC, Zauza EAV, Assis TF (2003) First record of Puccinia psidii on Eucalyptus globulus and E. viminalis in Brazil. Australas Plant Pathol 32:325–326.  https://doi.org/10.1071/AP03021 CrossRefGoogle Scholar
  2. Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evol 18:589–596.  https://doi.org/10.1016/j.tree.2003.08.013 CrossRefGoogle Scholar
  3. Alves AA, Rosado CCG, Faria DA, Guimaraes LMD, Lau D, Brommonschenkel SH, Grattapaglia D, Alfenas AC (2012) Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183:27–38.  https://doi.org/10.1007/s10681-011-0455-5 CrossRefGoogle Scholar
  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544.  https://doi.org/10.1016/j.tree.2004.07.021 CrossRefPubMedGoogle Scholar
  5. Anekonda TS, Criddle RS, Bacca M, Hansen LD (1999) Contrasting adaptation of two Eucalyptus subgenera is related to differences in respiratory metabolism. Funct Ecol 13:675–682.  https://doi.org/10.1046/j.1365-2435.1999.00367.x CrossRefGoogle Scholar
  6. Baker KF, Cook RJ (1974) Biological control of plant pathogens. W.H.Freeman and Company, San FranciscoGoogle Scholar
  7. Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  8. Bayly MJ (2016) Phylogenetics studies of eucalypts: fossils, morphology and genomes. Proc R Soc Vic 128:12–24.  https://doi.org/10.1071/RS16002 CrossRefGoogle Scholar
  9. Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61.  https://doi.org/10.11646/phytotaxa.297.1.5 CrossRefGoogle Scholar
  10. Berthon K, Esperon-Rodriguez M, Beaumont LJ, Carnegie AJ, Leishman MR (2018) Assessment and prioritisation of plant species at risk from myrtle rust (Austropuccinia psidii) under current and future climates in Australia. Biol Conserv 218:154–162.  https://doi.org/10.1016/j.biocon.2017.11.035 CrossRefGoogle Scholar
  11. Bloomfield JA, Nevill P, Potts BM, Vaillancourt RE, Steane DA (2011) Molecular genetic variation in a widespread forest tree species Eucalyptus obliqua (Myrtaceae) on the island of Tasmania. Aust J Bot 59:226–237.  https://doi.org/10.1071/BT10315 CrossRefGoogle Scholar
  12. Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, McDonald MW, Turner JD (2006) Forest trees of Australia, 5th edn. CSIRO Publishing, CollingwoodCrossRefGoogle Scholar
  13. Booth TH, Jovanovic T (2012) Assessing vulnerable areas for Puccinia psidii (eucalyptus rust) in Australia. Australas Plant Pathol 41:425–429.  https://doi.org/10.1007/s13313-012-0130-x CrossRefGoogle Scholar
  14. Bryner SF, Rigling D (2011) Temperature-dependent genotype-by-genotype interaction between a pathogenic fungus and its hyperparasitic virus. Am Nat 177:65–74.  https://doi.org/10.1086/657620 CrossRefPubMedGoogle Scholar
  15. Burdon JJ, Thrall PH (2014) What have we learned from studies of wild plant-pathogen associations?—the dynamic interplay of time, space and life-history. Eur J Plant Pathol 138:417–429.  https://doi.org/10.1007/s10658-013-0265-9 CrossRefGoogle Scholar
  16. Burdon RD (2001) Genetic diversity and disease resistance: some considerations for research, breeding, and deployment. Can J For Res 31:596–606.  https://doi.org/10.1139/cjfr-31-4-596 CrossRefGoogle Scholar
  17. Burgess TI, Wingfield MJ (2017) Pathogens on the move: a 100-year global experiment with planted eucalypts. BioScience 67:14–25.  https://doi.org/10.1093/biosci/biw146 CrossRefGoogle Scholar
  18. Butler JB, Freeman JS, Vaillancourt RE, Potts BM, Glen M, Lee DJ, Pegg GS (2016) Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genet Genomes 12(39).  https://doi.org/10.1007/s11295-016-0987-x
  19. Carnegie AJ (2015) First report of Puccinia psidii (myrtle rust) in Eucalyptus plantations in Australia. Plant Dis 99:161–161.  https://doi.org/10.1094/PDIS-09-14-0901-PDN CrossRefPubMedGoogle Scholar
  20. Carnegie AJ, Ades PK, Keane PJ, Smith IW (1998) Mycosphaerella diseases of juvenile foliage in a eucalypt species and provenance trial in Victoria, Australia. Aust For 61:190–194.  https://doi.org/10.1080/00049158.1998.10674739 CrossRefGoogle Scholar
  21. Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144.  https://doi.org/10.1007/s10530-015-0996-y CrossRefGoogle Scholar
  22. Carnegie AJ, Lidbetter JR (2012) Rapidly expanding host range for Puccinia psidii sensu lato in Australia. Australas Plant Pathol 41:13–29.  https://doi.org/10.1007/s13313-011-0082-6 CrossRefGoogle Scholar
  23. Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466.  https://doi.org/10.1071/AP10102 CrossRefGoogle Scholar
  24. Carnegie AJ, Pegg GS (2018) Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol 56:457–478.  https://doi.org/10.1146/annurev-phyto-080516-035256 CrossRefPubMedGoogle Scholar
  25. Desprez-Loustau ML, Marçais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612.  https://doi.org/10.1051/forest:2006040 CrossRefGoogle Scholar
  26. Downham R, Gavran M (2018) Australian plantation statistics 2018 update. Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), CanberraGoogle Scholar
  27. Dutkowski GW, Potts BM (1999) Geographic patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification. Aust J Bot 47:237–263.  https://doi.org/10.1071/BT97114 CrossRefGoogle Scholar
  28. Dutkowski GW, Potts BM (2012) Genetic variation in the susceptibility of Eucalyptus globulus to drought damage. Tree Genet Genomes 8:757–773.  https://doi.org/10.1007/s11295-011-0461-8 CrossRefGoogle Scholar
  29. Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477.  https://doi.org/10.1016/j.pbi.2010.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Oxford Science Publications, New YorkGoogle Scholar
  31. Fernandez Winzer L, Berthon KA, Carnegie AJ, Pegg GS, Leishman MR (2019) Austropuccinia psidii on the move: survey based insights to its geographical distribution, host species, impacts and management in Australia. Biol Invasions 21:1215–1225.  https://doi.org/10.1007/s10530-018-1891-0 CrossRefGoogle Scholar
  32. Fininsa C, Yuen J (2001) Association of maize rust and leaf blight epidemics with cropping systems in Hararghe highlands, eastern Ethiopia. Crop Prot 20:669–678.  https://doi.org/10.1016/S0261-2194(01)00033-3 CrossRefGoogle Scholar
  33. Forestry Tasmania (2010) Silvicultural systems for native eucalypt forests. Native Forest Silviculture Technical Bulletin No. 5. Forestry Tasmania, HobartGoogle Scholar
  34. Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (2007) Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol 175:370–380.  https://doi.org/10.1111/j.1469-8137.2007.02077.x CrossRefPubMedGoogle Scholar
  35. Freeman JS, Hamilton MG, Lee DJ, Pegg GS, Brawner JT, Tilyard PA, Potts BM (2018) Comparison of host susceptibility to native and exotic pathogens provides evidence for pathogen imposed selection in forest trees. New Phytol 221:2261–2272.  https://doi.org/10.1111/nph.15557 CrossRefPubMedGoogle Scholar
  36. Gandolfo MA, Hermsen EJ, Zamaloa MC, Nixon KC, Gonzalez CC, Wilf P, Cuneo NR, Johnson KR (2011) Oldest known Eucalyptus macrofossils are from South America. PLoS One 6:e21084.  https://doi.org/10.1371/journal.pone.0021084 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ghelardini L, Luchi N, Pecori F, Pepori AL, Danti R, Rocca GD, Capretti P, Tsopelas P, Santini A (2017) Ecology of invasive forest pathogens. Biol Invasions 19:3183–3200.  https://doi.org/10.1007/s10530-017-1487-0 CrossRefGoogle Scholar
  38. Gibbs JN, Wainhouse D (1986) Spread of forest pests and pathogens in the Northern Hemisphere. Forestry 59:141–153.  https://doi.org/10.1093/forestry/59.2.141 CrossRefGoogle Scholar
  39. Giblin F, Carnegie AJ (2014) Puccinia psidii (myrtle rust)—global host list. Australian Network for Plant Conservation. http://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html. Accessed 15 March 2017
  40. Gilbert GS, Briggs HM, Magarey R (2015) The impact of plant enemies shows a phylogenetic signal. PLoS One 10:e0123758.  https://doi.org/10.1371/journal.pone.0123758 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gilbert GS, Magarey R, Suiter K, Webb CO (2012) Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol Appl 5:869–878.  https://doi.org/10.1111/j.1752-4571.2012.00265.x CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci U S A 104:4979–4983.  https://doi.org/10.1073/pnas.0607968104 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929.  https://doi.org/10.1111/j.1469-8137.2008.02503.x CrossRefPubMedGoogle Scholar
  44. Hamilton MG, Williams DR, Tilyard PA, Pinkard EA, Wardlaw TJ, Glen M, Vaillancourt RE, Potts BM (2013) A latitudinal cline in disease resistance of a host tree. Heredity 110:372–379.  https://doi.org/10.1038/hdy.2012.106 CrossRefPubMedGoogle Scholar
  45. Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335.  https://doi.org/10.1016/j.foreco.2004.05.023 CrossRefGoogle Scholar
  46. Hanna JW, Graҫa RN, Kim MS, Ross-Davis AL, Hauff RD, Uchida JY, Kadooka CY, Rayamajhi MB, Arguedas Gamboa M, Lodge DJ, Medel Ortiz R, Lopez Ramírez A, Cannon PG, Alfenas AC, Klopfenstein NB (2012) A bioclimatic approach to predict global regions with suitable climate space for Puccinia psidii. In: Zeglen S, Palacios P (comp) Proceedings of the 59th Annual Western International Forest Disease Work Conference. Leavenworth, Washington, pp 131–136Google Scholar
  47. Ingham JL (1973) Disease resistance in higher plants: the concept of pre-infectional and post-infectional resistance. J Phytopathol 78:314–335.  https://doi.org/10.1111/j.1439-0434.1973.tb04182.x CrossRefGoogle Scholar
  48. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286 CrossRefPubMedGoogle Scholar
  49. Jones RC, Steane DA, Lavery M, Vaillancourt RE, Potts BM (2013) Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex. Ecol Evol 3:1–17.  https://doi.org/10.1002/ece3.421 CrossRefPubMedCentralGoogle Scholar
  50. Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D (2003) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–180.  https://doi.org/10.1007/s00122-003-1415-9 CrossRefPubMedGoogle Scholar
  51. Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot2. R J 5(1):144–161 URL http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf. Accessed 25 May 2018CrossRefGoogle Scholar
  52. Kirkpatrick JB (1974) The numerical intraspecific taxonomy of Eucalyptus globulus Labill. (Myrtaceae). Bot J Linn Soc 69:89–104.  https://doi.org/10.1111/j.1095-8339.1974.tb01618.x CrossRefGoogle Scholar
  53. Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Jamnadass R, Graudal L, Ramamonjisoa L (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34.  https://doi.org/10.1016/j.foreco.2014.07.017 CrossRefGoogle Scholar
  54. Külheim C, Yeoh SH, Wallis IR, Laffan S, Moran GF, Foley WJ (2011) The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol 191:1041–1053.  https://doi.org/10.1111/j.1469-8137.2011.03769.x CrossRefPubMedGoogle Scholar
  55. Kuznetsova A, Bruun Brockhoff P, Haubo Bojesen Christensen R (2016) lmerTest: tests in linear mixed effects model. R package version 2.0–32. URL https://cran.r-project.org/package=lmerTest. Accessed 25 May 2018
  56. Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM (2015) Patterns of reproductive isolation in Eucalyptus—a phylogenetic perspective. Mol Biol Evol 32:1833–1846.  https://doi.org/10.1093/molbev/msv063 CrossRefPubMedGoogle Scholar
  57. Lee DJ, Brawner JT, Pegg GS (2015) Screening Eucalyptus cloeziana and E. argophloia populations for resistance to Puccinia psidii. Plant Dis 99:71–79.  https://doi.org/10.1094/PDIS-04-14-0353-RE CrossRefPubMedGoogle Scholar
  58. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33.  https://doi.org/10.18637/jss.v069.i01 CrossRefGoogle Scholar
  59. Lopez GA, Potts BM, Dutkowski GW, Traverso JMR (2001) Quantitative genetics of Eucalyptus globulus: affinities of land race and native stand localities. Silvae Genet 50:244–252Google Scholar
  60. Mamani EMC, Bueno NW, Faria DA, Guimaraes LMS, Lau D, Alfenas AC, Grattapaglia D (2010) Positioning of the major locus for Puccinia psidii rust resistance (Ppr1) on the Eucalyptus reference map and its validation across unrelated pedigrees. Tree Genet Genomes 6:953–962.  https://doi.org/10.1007/s11295-010-0304-z CrossRefGoogle Scholar
  61. Moon DH, Salvatierra GR, Caldas DGG, de Carvalho MCCG, Carneiro RT, Franceschini LM, Oda S, Labate CA (2007) Comparison of the expression profiles of susceptible and resistant Eucalyptus grandis exposed to Puccinia psidii Winter using SAGE. Funct Plant Biol 34:1010–1018.  https://doi.org/10.1071/FP07094 CrossRefGoogle Scholar
  62. Morin L, Aveyard R, Lidbetter JR, Wilson PG (2012) Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLoS One 7:e35434.  https://doi.org/10.1371/journal.pone.0035434 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Naidoo S, Külheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, Wilken FE, Mamni TB, Myburg AA (2014) Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. Tree Physiol 34:931–943.  https://doi.org/10.1093/treephys/tpu075 CrossRefPubMedGoogle Scholar
  64. Neyland M, Hickey J, Beadle C, Bauhus J, Davidson N, Edwards L (2009) An examination of stocking and early growth in the Warra silvicultural systems trial confirms the importance of a burnt seedbed for vigorous regeneration in Eucalyptus obliqua forest. For Ecol Manag 258:481–494.  https://doi.org/10.1016/j.foreco.2008.10.039 CrossRefGoogle Scholar
  65. Nichol NS, Wingfield MJ, Swart WJ (1992) Differences in susceptibility of Eucalyptus species to Phaeoseptoria eucalypti. Eur J For Pathol 22:418–423.  https://doi.org/10.1111/j.1439-0329.1992.tb00315.x CrossRefGoogle Scholar
  66. Nicolle D (2006) Eucalypts of Victoria and Tasmania. Bloomings Books, MelbourneGoogle Scholar
  67. Noble IR (1989) Ecological traits of the Eucalyptus L’Herit. subgenera Monocalyptus and Symphyomyrtus. Aust J Bot 37:207–224.  https://doi.org/10.1071/BT9890207 CrossRefGoogle Scholar
  68. O’Reilly-Wapstra JM, McArthur C, Potts BM (2004) Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct Ecol 18:677–684.  https://doi.org/10.1111/j.0269-8463.2004.00887.x CrossRefGoogle Scholar
  69. Pegg GS, Brawner JT, Lee DJ (2014a) Screening Corymbia populations for resistance to Puccinia psidii. Plant Pathol 63:425–436.  https://doi.org/10.1111/ppa.12097 CrossRefGoogle Scholar
  70. Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S (2014b) Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathol 63:1005–1021.  https://doi.org/10.1111/ppa.12173 CrossRefGoogle Scholar
  71. Pegg GS, Lee DJ, Carnegie AJ (2018) Predicting impact of Austropuccinia psidii on populations of broad leaved Melaleuca species in Australia. Australas Plant Pathol 47:421–430.  https://doi.org/10.1007/s13313-018-0574-8 CrossRefGoogle Scholar
  72. Pegg G, Taylor T, Entwistle P, Guymer G, Giblin F, Carnegie A (2017) Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS One 12:e0188058.  https://doi.org/10.1371/journal.pone.0188058 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Potts BM, Sandhu KS, Wardlaw T, Freeman J, Li H, Tilyard P, Park RF (2016) Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. For Ecol Manag 368:183–193.  https://doi.org/10.1016/j.foreco.2016.02.027 CrossRefGoogle Scholar
  74. Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, McKinnon GE, Steane DA, Volker PW, Lopez GA, Apiolaza LA, Li Y, Marques C, Borralho NMG (2004) Exploration of the Eucalyptus globulus gene pool. In: Borralho NMG, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Proceedings of the IUFRO Conference: Eucalyptus in a changing world. Instituto Investigação de Floresta e Papel (RAIZ), Aveiro, pp 46–61Google Scholar
  75. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical computing, Vienna, Austria URL https://www.R-project.org/. Accessed 25 May 2018
  76. Sandhu KS, Karaoglu H, Zhang P, Park RF (2016) Simple sequence repeat markers support the presence of a single genotype of Puccinia psidii in Australia. Plant Pathol 65:1084–1094.  https://doi.org/10.1111/ppa.12501 CrossRefGoogle Scholar
  77. Sandhu KS, Park RF (2013) Genetic basis of pathogenicity in Uredo rangelii. National Myrtle Rust Transition to Management (T2M) Program Final Report. The University of Sydney, Cobbitty NSWGoogle Scholar
  78. Schroth G, Krauss U, Gasparotto L, Aguilar JAD, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241.  https://doi.org/10.1023/A:1006468103914 CrossRefGoogle Scholar
  79. Soewarto J, Carriconde F, Hugot N, Bocs S, Hamelin C, Maggia L (2018) Impact of Austropuccinia psidii in New Caledonia, a biodiversity hotspot. For Pathol 48:e12402.  https://doi.org/10.1111/efp.12402 CrossRefGoogle Scholar
  80. Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671.  https://doi.org/10.1038/23260 CrossRefPubMedGoogle Scholar
  81. Steane DA, Conod N, Jones RC, Vaillancourt RE, Potts BM (2006) A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes 2:30–38.  https://doi.org/10.1007/s11295-005-0028-7 CrossRefGoogle Scholar
  82. Stenlid J, Oliva J (2016) Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philos Trans R Soc B Biol Sci 371:20150455.  https://doi.org/10.1098/rstb.2015.0455 CrossRefGoogle Scholar
  83. Stone C, Simpson JA, Gittins R (1998) Differential impact of insect herbivores and fungal pathogens on the Eucalyptus subgenera Symphyomyrtus and Monocalyptus and genus Corymbia. Aust J Bot 46:723–734.  https://doi.org/10.1071/BT97077 CrossRefGoogle Scholar
  84. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133–149.  https://doi.org/10.1111/j.1365-3059.2010.02406.x CrossRefGoogle Scholar
  85. Telechea N, Rolfo M, Coutinho TA, Wingfield MJ (2003) Puccinia psidii on Eucalyptus globulus in Uruguay. Plant Pathol 52:427.  https://doi.org/10.1046/j.1365-3059.2003.00853.x CrossRefGoogle Scholar
  86. Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phylogenet Evol 93:29–43.  https://doi.org/10.1016/j.ympev.2015.07.007 CrossRefPubMedGoogle Scholar
  87. Thumma B, Pegg G, Warburton P, Brawner J, Macdonell P, Yang X, Southerton S (2013) Molecular tagging of rust resistance genes in eucalypts. Final Report PHA_6.2. Plant Health Australia Limited, CanberraGoogle Scholar
  88. Tobias PA, Guest DI, Külheim C, Hsieh JF, Park RF (2016) A curious case of resistance to a new encounter pathogen: myrtle rust in Australia. Mol Plant Pathol 17:783–788.  https://doi.org/10.1111/mpp.12331 CrossRefPubMedGoogle Scholar
  89. Turnbull CRA, McLeod DE, Beadle CL, Ratkowsky DA, Mummery DC, Bird T (1993) Comparative early growth of Eucalyptus species of the subgenera Monocalyptus and Symphyomyrtus in intensively-managed plantations in southern Tasmania. Aust For 56:276–286.  https://doi.org/10.1080/00049158.1993.10674615 CrossRefGoogle Scholar
  90. van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017.  https://doi.org/10.1105/tpc.108.060194 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wallis IR, Keszei A, Henery ML, Moran GF, Forrester R, Maintz J, Marsh KJ, Andrew RL, Foley WJ (2011) A chemical perspective on the evolution of variation in Eucalyptus globulus. Perspect Plant Ecol Evol Syst 13:305–318.  https://doi.org/10.1016/j.ppees.2011.05.005 CrossRefGoogle Scholar
  92. Wallis IR, Nicolle D, Foley WJ (2010) Available and not total nitrogen in leaves explains key chemical differences between the eucalypt subgenera. For Ecol Manag 260:814–821.  https://doi.org/10.1016/j.foreco.2010.05.040 CrossRefGoogle Scholar
  93. Walters JR, Bell TL, Read S (2005) Intra-specific variation in carbohydrate reserves and sprouting ability in Eucalyptus obliqua seedlings. Aust J Bot 53:195–203.  https://doi.org/10.1071/BT04016 CrossRefGoogle Scholar
  94. Wilkinson GR (2008) Population differentiation within Eucalyptus obliqua: implications for regeneration success and genetic conservation in production forests. Aust For 71:4–15.  https://doi.org/10.1080/00049158.2008.10676266 CrossRefGoogle Scholar
  95. Williams KJ, Potts BM (1996) The natural distribution of Eucalyptus species in Tasmania. Tasforests 8:39–165Google Scholar
  96. Wingfield MJ, Slippers B, Hurley BP, Coutinho TA, Wingfield BD, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144.  https://doi.org/10.2989/SOUTH.FOR.2008.70.2.9.537 CrossRefGoogle Scholar
  97. Wong CM, Daniels LD (2017) Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob Chang Biol 23:1926–1941.  https://doi.org/10.1111/gcb.13554 CrossRefPubMedGoogle Scholar
  98. Yeoh SH, Bell JC, Foley WJ, Wallis IR, Moran GF (2012) Estimating population boundaries using regional and local-scale spatial genetic structure: an example in Eucalyptus globulus. Tree Genet Genomes 8:695–708.  https://doi.org/10.1007/s11295-011-0457-4 CrossRefGoogle Scholar
  99. Zauza EAV, Alfenas AC, Old K, Couto MMF, Graҫa RN, Maffia LA (2010) Myrtaceae species resistance to rust caused by Puccinia psidii. Australas Plant Pathol 39:406–411.  https://doi.org/10.1071/AP10077 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biotechnology Research InstituteUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.School of Ecosystem and Forest SciencesThe University of MelbourneCreswickAustralia
  3. 3.School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleAustralia
  4. 4.School of Life and Environmental Sciences, Plant Breeding InstituteThe University of SydneyCobbittyAustralia
  5. 5.School of Natural Sciences and ARC Training Centre for Forest ValueUniversity of TasmaniaHobartAustralia
  6. 6.Agriculture VictoriaDepartment of Jobs, Precincts and RegionsBundooraAustralia

Personalised recommendations