Advertisement

Tree Genetics & Genomes

, 15:17 | Cite as

Genome-wide identification and characterization of sweet orange (Citrus sinensis) aquaporin genes and their expression in two citrus cultivars differing in drought tolerance

  • Qingjiang Wei
  • Qiaoli Ma
  • Zhangzheng Ma
  • Gaofeng Zhou
  • Fangfang Feng
  • Si Le
  • Changyu Lei
  • Qingqing GuEmail author
Original Article
  • 7 Downloads
Part of the following topical collections:
  1. Gene Expression

Abstract

Aquaporins (AQPs), which belong to a highly conserved superfamily of major intrinsic proteins (MIPs), play key roles in regulation of movement of water and other small molecules across membranes. However, information concerning the AQP gene family in citrus is limited. Here, we conducted a genome-wide search for the homologs of AQPs in sweet orange and identified 34 full-length AQP genes (CsAQPs) that were located on all nine chromosomes. Phylogenetic analysis revealed that the CsAQPs could be classified into five subfamilies, including 11 plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), three small basic intrinsic proteins (SIPs), and three X intrinsic proteins (XIPs). Gene structure was generally conserved within each subfamily, with intron numbers ranging from zero to four. Functional prediction based on the analysis of the NPA motifs, aromatic/arginine (ar/R) selectivity filter, Froger’s positions, and specificity-determining positions (SDPs) revealed remarkable differences in substrate specificity among subfamilies. Furthermore, analysis of the transcription profile of CsAQP genes in the roots and leaves of drought-tolerant (HJ) and drought-sensitive (HH) cultivars under drought treatment revealed that most CsPIPs and CsTIPs were down-regulated in roots of both treated cultivars. In addition, the down-regulation of CsPIP1;2, CsTIP3;2, and CsNIP2;1 in roots and up-regulation of CsNIP1;1, CsNIP1;3, CsNIP4;1, and CsNIP5;1 in leaves revealed obvious differences between tolerant and sensitive cultivars during drought. Collectively, these findings provide valuable knowledge that furthers our understanding of the potential biological functions of AQP genes in drought tolerance of citrus.

Keywords

Aquaporin Drought stress Gene expression Phylogenetic analysis Sweet orange 

Notes

Acknowledgments

We thank LetPub (http://www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Data archiving statement

The AQP gene family sequences have been identified based on the genome sequence of sweet orange (http://citrus.hzau.edu.cn/orange/). All the nucleotide sequences of CsAQP have been deposited to GenBank and the accession numbers are shown in Table S1.

Funding information

This work was funded by the National Natural Science Foundation of China (Grant No.31460496, 31501811).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

11295_2019_1321_MOESM1_ESM.docx (45 kb)
Fig S1 (DOCX 44 kb)
11295_2019_1321_MOESM2_ESM.docx (35 kb)
Fig S2 (DOCX 35 kb)
11295_2019_1321_MOESM3_ESM.xlsx (18 kb)
Table S1 (XLSX 18 kb)
11295_2019_1321_MOESM4_ESM.docx (22 kb)
Table S2 (DOCX 22 kb)
11295_2019_1321_MOESM5_ESM.docx (20 kb)
Table S3 (DOCX 20 kb)
11295_2019_1321_MOESM6_ESM.docx (30 kb)
Table S4 (DOCX 30 kb)

References

  1. Afzal Z, Howton T, Sun Y, Mukhtar M (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4:9.  https://doi.org/10.3390/jdb4010009 CrossRefPubMedCentralGoogle Scholar
  2. Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447.  https://doi.org/10.1105/tpc.009225 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alexandersson E, Danielson JA, Råde J, Moparthi VK, Fontes M, Kjellbom P, Johanson U (2010) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant J 61:650–660.  https://doi.org/10.1111/j.1365-313X.2009.04087.x CrossRefPubMedGoogle Scholar
  4. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484.  https://doi.org/10.1007/s11103-005-0352-1 CrossRefPubMedGoogle Scholar
  5. Ariani A, Gepts P (2015) Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genomics 290:1771–1785.  https://doi.org/10.1007/s00438-015-1038-2 CrossRefPubMedGoogle Scholar
  6. Azad AK, Katsuhara M, Sawa Y, Ishikawa T, Shibata H (2008) Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation. Plant Cell Physiol 49:1196–1208.  https://doi.org/10.1093/pcp/pcn095 CrossRefPubMedGoogle Scholar
  7. Bramley H, Turner NC, Turner DW, Tyerman SD (2009) Roles of morphology, anatomy, and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol 150:348–364.  https://doi.org/10.1104/pp.108.134098 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618.  https://doi.org/10.1104/pp.113.233791 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cohen D, Bogeat-Triboulot MB, Vialet-Chabrand S, Merret R, Courty PE, Moretti S, Bizet F, Guilliot A, Hummel I (2013) Developmental and environmental regulation of aquaporin gene expression across Populus species: divergence or redundancy? PLoS One 8:e55506.  https://doi.org/10.1371/journal.pone.0055506 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cui HX, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214.  https://doi.org/10.1007/s10265-007-0130-z CrossRefPubMedGoogle Scholar
  11. Danielson JÅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45.  https://doi.org/10.1186/1471-2229-8-45 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deokar AA, Tar'An B (2016) Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front Plant Sci 7:1802.  https://doi.org/10.3389/fpls.2016.01802 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Be’langer RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–317.  https://doi.org/10.1007/s11103-013-0087-3 CrossRefPubMedGoogle Scholar
  14. Diehn TA, Pommerrenig B, Bernhardt N, Hartmann A, Bienert GP (2015) Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis. Front Plant Sci 6:166.  https://doi.org/10.3389/fpls.2015.00 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dynowski M, Mayer M, Moran O, Ludewig U (2008) Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett 582:2458–2462.  https://doi.org/10.1016/j.febslet.2008.06.012
  16. Eisenbarth DA, Weig AR (2005) Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J Exp Bot 56:1831–1842.  https://doi.org/10.1093/jxb/eri173 CrossRefPubMedGoogle Scholar
  17. Froger A, Thomas D, Delamarche C, Tallur B (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7:1458–1468.  https://doi.org/10.1002/pro.5560070623 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gambetta GA, Fei J, Rost TL, Knipfer T, Matthews MA, Shackel KA, Walker MA, McElrone AJ (2013) Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport. Plant Physiol 163:1254–1265.  https://doi.org/10.1104/pp.113.221283 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134.  https://doi.org/10.1186/1471-2229-9-134 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gu Z, Cavalcanti A, Chen F, Bouman P, Li W (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19:256–262.  https://doi.org/10.1093/oxfordjournals.molbev.a004079 CrossRefPubMedGoogle Scholar
  21. Gustavsson S, Lebrun AS, Nordén K, Chaumont F, Johanson U (2005) A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels. Plant Physiol 139:287–295.  https://doi.org/10.1104/pp.105.063198 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430.  https://doi.org/10.1007/s11103-011-9737-5 CrossRefPubMedGoogle Scholar
  23. Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS One 10:e0128025.  https://doi.org/10.1371/journal CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hu W, Hou XW, Huang C, Yan Y, Tie WW, Ding ZH, Wei YX, Liu JH, Mao HX, Lu ZW, Li MY, Xu BY, Jin ZQ (2015) Genome-wide identification and expression analyses of aquaporin gene family during development and abiotic stress in Banana. Int J Mol Sci 16:19728–19751.  https://doi.org/10.3390/ijms160819728 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313.  https://doi.org/10.1093/aob/mcf199 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jang YJ, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis, and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632.  https://doi.org/10.1007/s11103-007-9181-8 CrossRefPubMedGoogle Scholar
  27. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369.  https://doi.org/10.1104/pp.126.4.1358 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kalinina OV, Mironov AA, Gelfand MS, Rakhmaninova AB (2004) Automated selection of positions determining functional specificity of proteins by comparative analysis of orthologous groups in protein families. Protein Sci 13:443–456.  https://doi.org/10.1110/ps.03191704 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51(4).  https://doi.org/10.1186/s40659-018-0152-0
  30. Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS (2017) Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC Plant Biol 17(23):23.  https://doi.org/10.1186/s12870-017-0979-5 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li D, Ruan X, Zhang J, Wu Y, Wang X, Li X (2013) Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol 199:695–707.  https://doi.org/10.1111/nph.12309 CrossRefPubMedGoogle Scholar
  32. Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta Gen Subj 1840:1574–1582.  https://doi.org/10.1016/j.bbagen.2013.11.004 CrossRefGoogle Scholar
  33. Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489.  https://doi.org/10.1093/pcp/pch058 CrossRefPubMedGoogle Scholar
  34. Lin WL, Peng YH, Li GW, Arora R, Tang ZC, Su WA, Cai WM (2007) Isolation and functional characterization of PgTIP1, a hormone-autotrophic cells-specific tonoplast aquaporin in ginseng. J Exp Bot 58:947–956.  https://doi.org/10.1093/jxb/erl255 CrossRefPubMedGoogle Scholar
  35. Liu CH, Li C, Liang D, Ma FW, Wang SC, Wang P, Wang RC (2013) Aquaporin expression in response to water-deficit stress in two Malus species: relationship with physiological status and drought tolerance. Plant Growth Regul 70:187–197.  https://doi.org/10.1007/s10725-013-9791-x CrossRefGoogle Scholar
  36. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96.  https://doi.org/10.1111/j.1365-3040.2004.01295.x CrossRefGoogle Scholar
  37. Martins CDPS, Pedrosa AM, Du DL, Gonçalves LPYQB, Gmitter FG, Gilberto F, Costa C (2015) Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10:e0138786.  https://doi.org/10.1371/journal.pone.0138786 CrossRefGoogle Scholar
  38. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358.  https://doi.org/10.1152/physrev.00008.2015 CrossRefPubMedGoogle Scholar
  39. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398.  https://doi.org/10.1093/jxb/err158 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol 10:1–17.  https://doi.org/10.1186/1471-2229-10-142 CrossRefGoogle Scholar
  41. Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini F, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C (2012) The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160:965–977.  https://doi.org/10.1104/pp.112.203455 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pou A, Medrano H, Flexas J, Tyerman SD (2013) A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant Cell Environ 36:828–843.  https://doi.org/10.1111/pce.12019 CrossRefPubMedGoogle Scholar
  43. Reddy PS, Rao TSRB, Sharma KK, Vadez V (2015) Genome-wide identification and characterization of the aquaporin gene family in Sorghum bicolor (L.). Plant Gene 1:18–28.  https://doi.org/10.1016/j.plgene.2014.12.002 CrossRefGoogle Scholar
  44. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8:e79052.  https://doi.org/10.1371/journal.pone.0079052 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rodrigues MI, Takeda AA, Bravo JP, Maia IG (2016) The eucalyptus tonoplast intrinsic protein (TIP) gene subfamily: genomic organization, structural features, and expression profiles. Front Plant Sci 7:1810.  https://doi.org/10.3389/fpls.2016.01810 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rodríguez-Gamir J, Ancillo G, Aparicio F, Bordas M, Primo-Millo E, Forner-Giner MÁ (2011) Water-deficit tolerance in citrus is mediated by the down regulation of PIP gene expression in the roots. Plant Soil 347:91–104.  https://doi.org/10.1007/s11104-011-0826-7 CrossRefGoogle Scholar
  47. Sade N, Vinocur B, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661.  https://doi.org/10.1111/j.1469-8137.2008.02689.x CrossRefPubMedGoogle Scholar
  48. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577.  https://doi.org/10.1093/pcp/pci172 CrossRefPubMedGoogle Scholar
  49. Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterization of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1065–1078.  https://doi.org/10.1071/FP09117 CrossRefGoogle Scholar
  50. Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137.  https://doi.org/10.1038/srep46137 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sreedharan S, Shekhawat UK, Ganapathi TR (2013) Transgenic banana plants overexpressing a native plasma membrane aquaporin MuasPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnol J 11:942–952.  https://doi.org/10.1111/pbi.12086 CrossRefPubMedGoogle Scholar
  52. Sun HY, Li LC, Lou YF, Zhao HS, Gao ZM (2016) Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep 43:437–450.  https://doi.org/10.1007/s11033-016-3973-3 CrossRefPubMedGoogle Scholar
  53. Tao P, Zhong XM, Li BY, Wang WH, Yue ZC, Lei JL, Guo WL, Huang XY (2014) Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 289:1131–1145.  https://doi.org/10.1007/s00438-014-0874-9 CrossRefPubMedGoogle Scholar
  54. Tombuloglu H, Ozcan I, Tombuloglu G, Sakcali S, Unver T (2016) Aquaporins in boron-tolerant barley: identification, characterization, and expression analysis. Plant Mol Biol Report 34:374–386.  https://doi.org/10.1007/s11105-015-0930-6 CrossRefGoogle Scholar
  55. Wang X, Cai H, Li Y, Zhu YM, Ji W, Bai X, Zhu D, Sun XL (2015) Ectopic overexpression of a novel Glycine soja, stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants. J Plant Res 128:103–113.  https://doi.org/10.1007/s10265-014-0674-7 CrossRefPubMedGoogle Scholar
  56. Wang C, Wang LQ, Yang CP, Wang YC (2017) Identification, phylogeny, and transcript profiling of aquaporin genes in response to abiotic stress in Tamarix hispida. Tree Genet Genomes 13(81).  https://doi.org/10.1007/s11295-017-1163-7
  57. Wei QJ, Feng FF, Ma ZZ, Su ST, Ning SJ, Gu QQ (2018) Effects of drought and rewatering on leaf photosynthesis, chlorophyll fluorescence, and root architecture of two citrus seedlings. Chin J Appl Ecol 29:2485–2492.  https://doi.org/10.1007/s11295-017-1163-7 CrossRefGoogle Scholar
  58. Wu QS, Srivastava AK, Zou YN (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87.  https://doi.org/10.1016/j.scienta.2013.09.010 CrossRefGoogle Scholar
  59. Xu Y, Hu W, Liu JH, Zhang JB, Jia CH, Miao HX, Xu BY, Jin ZQ (2014) A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:59.  https://doi.org/10.1186/1471-2229-14-59 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng YJ, Xu J, Liu JH, Luo OJ, Tang Z, Guo WW, Kuang H, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan Y (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66.  https://doi.org/10.1038/ng.2472 CrossRefPubMedGoogle Scholar
  61. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591.  https://doi.org/10.1093/molbev/msm088 CrossRefPubMedGoogle Scholar
  62. Yu QJ, Hu YL, Li JF, Wu Q, Lin ZP (2005) Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci 169:647–656.  https://doi.org/10.1016/j.plantsci.2005.04.013 CrossRefGoogle Scholar
  63. Yuan D, Li W, Hua YP, King GJ, Xu FS, Shi L (2017) Genome-wide identification and characterization of the aquaporin gene family and transcriptional responses to boron deficiency in Brassica napus. Front Plant Sci 8(1336).  https://doi.org/10.3389/fpls.2017.01336
  64. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang HY, Khan IA, Trethowan RM, Ma HX (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 8.  https://doi.org/10.1371/journal.pone.0056312
  65. Zou Z, Gong J, An F, Xie GS, Wang JK, Mo YY, Yang LF (2015) Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genomics 16(1):–18.  https://doi.org/10.1186/s12864-0152152-6
  66. Zou Z, Yang LF, Gong J, Mo YY, Wang JK, Cao JH, An F, Xie GS (2016) Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis. Front Plant Sci 7(395).  https://doi.org/10.3389/fpls.2016.00395
  67. Zupin M, Sedlar A, Kidrič M, Meglič V (2017) Drought-induced expression of aquaporin genes in leaves of two common bean cultivars differing in tolerance to drought stress. J Plant Res 130:730–745.  https://doi.org/10.1007/s10265-017-0920-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qingjiang Wei
    • 1
  • Qiaoli Ma
    • 1
  • Zhangzheng Ma
    • 1
  • Gaofeng Zhou
    • 2
  • Fangfang Feng
    • 1
  • Si Le
    • 1
  • Changyu Lei
    • 1
  • Qingqing Gu
    • 1
    Email author
  1. 1.College of AgronomyJiangxi Agricultural UniversityNanchangChina
  2. 2.National Navel Orange Engineering Research CenterGannan Normal UniversityGanzhouChina

Personalised recommendations