Tree Genetics & Genomes

, 14:88 | Cite as

Ancient east-west divergence, recent admixture, and multiple marginal refugia shape genetic structure of a widespread oak species (Quercus acutissima) in China

  • Xing-Wang Zhang
  • Yao Li
  • Qiang Zhang
  • Yan-Ming FangEmail author
Original Article
Part of the following topical collections:
  1. Population structure


The interactions of major topographic features with climate fluctuations over time are key factors that influence the spatial genetic structure of trees species. As an important characteristic of China’s terrain, the boundary between the mountainous West China and the lowland East China has been found to contribute to the divergence of many species. In this study, we examined whether the stepped geomorphology of China has shaped the genetic structure of Quercus acutissima, a widespread oak species native to East Asia, at a much larger geographic scale. Thirty natural populations of the species were sampled across the entire distribution in China and genotyped using ten nuclear microsatellite markers. To determine the genetic structure and demographic history, we conducted Bayesian cluster analysis and approximate Bayesian computation. A significant east-west divergence was detected at the species level, with western populations presenting much stronger differentiation and lower genetic diversity than eastern populations. The divergence between the groups of Southwest China and East China was estimated to have occurred 3.55–2.37 million years ago (Ma), closely associated with the recent uplift of the Qinghai-Tibetan Plateau (QTP) and climate changes during the late Pliocene to the early Pleistocene. The Central China group may arise from the admixture of these two groups, which was dated to 0.83–0.55 Ma, a period covering several interglacial intervals with unusually warm and wet climate in Central China. The spatial genetic structure of Q. acutissima indicates the possibility of central-marginal dispersal dynamics along latitude and existence of multiple refugia at distribution edges. Our findings highlight that the stepped geomorphology in China and climatic changes since the Pliocene play an important role in shaping the intraspecific genetic structure of widespread species in East Asia.


Admixture Central-marginal hypothesis Divergence The late Pliocene to the early Pleistocene Multiple refugia Quercus acutissima 



We thank the editor and three anonymous reviewers for their critical comments; all members from Sork’s lab at UCLA: Victoria L. Sork, Alayna Mead, Claudia Henriquez, Dylan Burge, Luke Browne, Rachel Meyer, Scott O’Donnell, and Sorel Fitz-Gibbon for their insightful comments and detailed edits; Qing-Feng Huang, Shao-Bin Ma, Ming Cao, Zhi-Gao Liu, Mao Wang, Su-Fang Yu, Heng Jia, Su-Jing Fu, Hua-Chen Wang, and Luo-Zhong Tang for their help with fieldwork; Gao-Ming Wei, Xiao-Meng Shi, and Yu-Xiang Liu for their assistant with data analysis.

Data archiving statement

Microsatellite genotype dataset is available from the Zenodo:

Authors’ contributions

Xing-Wang Zhang conducted molecular laboratory work. Xing-Wang Zhang and Yao Li collected the samples. Xing-Wang Zhang, Yao Li, Qiang Zhang, and Yan-Ming Fang conceived the study, analyzed the data, and wrote the manuscript.

Funding information

This research was supported by the National Natural Science Foundation of China (31770699, 31370666), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYLX15_0922).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1302_MOESM1_ESM.docx (877 kb)
ESM 1 (DOCX 876 kb)


  1. Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in south American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol Phylogenet Evol 54:235–242CrossRefPubMedGoogle Scholar
  2. Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474CrossRefGoogle Scholar
  3. An ZS, Wang SM, Wu XH, Chen MY, Sun DH, Liu XM, Wang FB, Li L, Sun YB, Zhou WJ, Zhou J, Liu XD, Lu HY, Zhang YX, Dong GR, Qiang XK (1999) Eolian evidence from the Chinese loess plateau: the onset of the late Cenozoic great glaciation in the northern hemisphere and Qinghai-Xizang plateau uplift forcing. Sci China Ser D Earth Sci 42:258–271CrossRefGoogle Scholar
  4. An ZS, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66CrossRefGoogle Scholar
  5. Bagnoli F, Tsuda Y, Fineschi S, Bruschi P, Magri D, Zhelev P, Paule L, Simeone MS, González-Martínez SC, Vendramin GG (2015) Combining molecular and fossil data to infer demographic history of Quercus cerris: insights on European eastern glacial refugia. J Biogeogr 43:679–690CrossRefGoogle Scholar
  6. Bai WN, Wang WT, Zhang DY (2014) Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an east Asian temperate tree. Mol Phylogenet Evol 81:37–48CrossRefPubMedGoogle Scholar
  7. Bai WN, Wang WT, Zhang DY (2016) Phylogeographic breaks within Asian butternuts indicate the existence of a phylogeographic divide in East Asia. New Phytol 209:1757–1772CrossRefPubMedGoogle Scholar
  8. Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22:341–345CrossRefPubMedGoogle Scholar
  9. Cavender-Bares J, Gonzalez-Rodriguez A, Pahlich A, Koehler K, Deacon N (2011) Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. J Biogeogr 38:962–981CrossRefGoogle Scholar
  10. Cavender-Bares J, González-Rodríguez A, Eaton DA, Hipp AA, Beulke A, Manos PS (2015) Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a genomic and population genetics approach. Mol Ecol 24:3668–3687CrossRefPubMedGoogle Scholar
  11. Chang ZG, Xiao JL, Lü LQ, Yao HT (2010) Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in Southwest China. J Asian Earth Sci 37:166–175CrossRefGoogle Scholar
  12. Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  13. Chen FH, Bloemendal J, Zhang PZ, Liu GX (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 151:307–320CrossRefGoogle Scholar
  14. Chen DM, Zhang XX, Kang HZ, Sun X, Yin S, Du HM, Yamanaka N, Gapare W, Wu HX, Liu CJ (2012) Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS One 7:e47268CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen JM, Zhao SY, Liao YY, Gichira AW, Gituru RW, Wang QF (2015) Chloroplast DNA phylogeographic analysis reveals significant spatial genetic structure of the relictual tree Davidia involucrate (Davidiaceae). Conserv Genet 16:583–593CrossRefGoogle Scholar
  16. Chen YS, Deng T, Zhou Z, Sun H (2017) Is the east Asian flora ancient or not? Nat Sci Rev.
  17. Choi HS, Kim YY, Hong KN, Hong YP, Hyun JO (2005) Genetic structure of a population of Quercus acutissima in Korea revealed by microsatellite markers. Korean J Genet 27:267–271Google Scholar
  18. Chung MY, Nason J, Chung MG, Kim KJ, Park CW, Sun BY, Pak JH (2002) Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). Am J Bot 89:1229–1236CrossRefPubMedGoogle Scholar
  19. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113CrossRefPubMedGoogle Scholar
  20. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  21. Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin JM, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189CrossRefPubMedGoogle Scholar
  22. Dieringer D, Schlotterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  23. Dow BD, Ashley MV (1996) Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol 5:615–627CrossRefGoogle Scholar
  24. Du FK, Hou M, Wang WT, Mao KS, Arndt H (2017) Phylogeography of Quercus aquifolioides provides novel insights into the Neogene history of a major global hotspot of plant diversity in south-West China. J Biogeogr 44:294–307CrossRefGoogle Scholar
  25. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259CrossRefGoogle Scholar
  26. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  27. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  28. Fan L, Zheng H, Milne RI, Zhang L, Mao K (2018) Strong population bottleneck and repeated demographic expansions of Populus adenopoda (Salicaceae) in subtropical China. Ann Bot 121:665–679. CrossRefPubMedGoogle Scholar
  29. Fujiwara K, Harada A (2015) Character of warm-temperate Quercus forests in Asia. In: Box E, Fujiwara K (eds) Warm-temperate deciduous forests around the northern hemisphere. Geobotany studies (basics, methods and case studies). Springer, Cham, pp 27–80Google Scholar
  30. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3).
  31. Gugger PF, Ikegami M, Sork VL (2013) Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née. Mol Ecol 22:3598–3612CrossRefPubMedGoogle Scholar
  32. Guo ZT, Liu TS, Fédoroff N, Wei LY, Ding ZL, Wu NQ, Lu HY, Jiang WY, An ZS (1998) Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Glob Planet Chang 18:113–128CrossRefGoogle Scholar
  33. Guo XD, Wang HF, Bao L, Wang TM, Bai WN, Ye JW, Ge JP (2014) Evolutionary history of a widespread tree species Acer mono in East Asia. Ecol Evol 4:4332–4345CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hao QZ, Wang L, Oldfeld F, Guo ZT (2015) Extra-long interglacial in northern hemisphere during MISs 15-13 arising from limited extent of Arctic ice sheets in glacial MIS 14. Sci Rep 5:12103CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  36. Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedPubMedCentralGoogle Scholar
  37. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638CrossRefPubMedGoogle Scholar
  38. Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Avalos SV, Cavender-Bares J (2018) Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol 217:439–452CrossRefPubMedGoogle Scholar
  39. Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A (2014) Multiple nuclear genes stabilize the phylogenetic backbone of the genus Quercus. Syst Biodivers 12:405–423CrossRefGoogle Scholar
  40. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  41. Isagi Y, Suhandono S (1997) PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Mol Ecol 6:897–899CrossRefPubMedGoogle Scholar
  42. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  43. Jose-Maldia LS, Matsumoto A, Ueno S, Kanazashi A, Kanno M, Namikawa K, Yoshimaru H, Tsumura Y (2017) Geographic patterns of genetic variation in nuclear and chloroplast genomes of two related oaks (Quercus aliena and Q. serrata) in Japan: implications for seed and seedling transfer. Tree Genet Genome 13:121CrossRefGoogle Scholar
  44. Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186CrossRefGoogle Scholar
  45. Kou YX, Cheng SM, Tian S, Li B, Fan DM, Chen YJ, Soltis DE, Soltis PS, Zhang ZY (2015) The antiquity of Cyclocarya paliurus (Juglandaceae) provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene. J Biogeogr 43:351–360CrossRefGoogle Scholar
  46. Li C, Sun Y, Huang HW, Cannon CH (2014) Footprints of divergent selection in natural populations of Castanopsis fargesii (Fagaceae). Heredity 113:533–541CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li YM, Ferguson DK, Zhao Q, Wang YF, Wang RX, Li CS (2015) Diatom-inferred salinity changes from the Yushe paleolake indicate an aridification during the Pliocene-Pleistocene transition in North China. Palaeogeogr Palaeoclimatol Palaeoecol 417:544–553CrossRefGoogle Scholar
  48. Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD (2018) Evolutionary history of the angiosperm flora of China. Nature 554:234–238CrossRefPubMedGoogle Scholar
  49. Meng HH, Su T, Gao XY, Li J, Jiang XL, Sun H, Zhou ZK (2017) Warm-cold colonization: response of oaks to uplift of the Himalaya-Hengduan Mountains. Mol Ecol 26:3276–3294CrossRefPubMedGoogle Scholar
  50. Micheletti SJ, Storfer A (2015) A test of the central-marginal hypothesis using population genetics and ecological niche modelling in an endemic salamander (Ambystoma barbouri). Mol Ecol 24:967–979CrossRefPubMedGoogle Scholar
  51. Mingeot D, Husson C, Mertens P, Watillon B, Bertin P, Druart P (2016) Genetic diversity and genetic structure of black alder (Alnus glutinosa [L.] Gaertn) in the Belgium-Luxembourg-France cross-border area. Tree Genet Genome 12:24CrossRefGoogle Scholar
  52. Mohammad-Panah N, Shabanian N, Khadivi A, Rahmani MS, Emami A (2017) Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genet Genome 13:70CrossRefGoogle Scholar
  53. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  54. Ortego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 21:3210–3223CrossRefPubMedGoogle Scholar
  55. Ortego J, Gugger PF, Sork VL (2015) Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. J Biogeogr 42:328–338CrossRefGoogle Scholar
  56. Ortego J, Gugger PF, Sork VL (2017) Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus). New Phytol 218:804–818. CrossRefPubMedGoogle Scholar
  57. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  58. Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393CrossRefPubMedGoogle Scholar
  59. Petit RJ, Carlson J, Curtu AL, Loustau ML, Plomion C, González-Rodríguez A, Sork V, Ducousso A (2013) Fagaceae trees as models to integrate ecology, evolution and genomics. New Phytol 197:369–371CrossRefPubMedGoogle Scholar
  60. Premoli AC, Mathiasen P, Acosta MC, Ramos VA (2012) Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. how deep can it be? New Phytol 193:261–275CrossRefPubMedGoogle Scholar
  61. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  62. Qi XS, Chen C, Comes HP, Sakaguchi S, Liu YH, Tanaka N, Sakio H, Qiu YX (2012) Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the east Asian tertiary relict Cercidiphyllum (Cercidiphyllaceae). New Phytol 196:617–630CrossRefPubMedGoogle Scholar
  63. Rice WP (1989) Analyzing tables of statistical tests. Evolution 43:223–249CrossRefPubMedGoogle Scholar
  64. Riordan EC, Gugger PF, Ortego J, Smith C, Gaddis K, Thompson P, Sork VL (2016) Association of genetic and phenotypic variability with geography and climate in three southern California oaks. Am J Bot 103:73–85CrossRefPubMedGoogle Scholar
  65. Rodríguez-Correa H, Oyama K, Quesada M, Fuchs EJ, Quezada M, Ferrufino L, Valencia-Ávalos S, Cascante-Marín A, González-Rodríguez A (2017) Complex phylogeographic patterns indicate central American origin of two widespread Mesoamerican Quercus (Fagaceae) species. Tree Genet Genome 13:62CrossRefGoogle Scholar
  66. Rohlf FJ (1999) NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, SetauketGoogle Scholar
  67. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  68. Saito Y, Tsuda Y, Uchiyama K, Fukuda T, Seto S, Kim P, Shen H, Ide Y (2017) Genetic variation in Quercus acutissima Carruth., in traditional Japanese rural forests and agricultural landscapes, revealed by chloroplast microsatellite markers. Forests 8:451CrossRefGoogle Scholar
  69. Shi MM, Michalski SG, Welk E, Chen XY, Durka W (2014) Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J Biogeogr 41:1710–1720CrossRefGoogle Scholar
  70. Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus group Ilex. PeerJ 4:e1897CrossRefPubMedPubMedCentralGoogle Scholar
  71. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  72. Song SY, Krajewska K, Wang YF (2000) The first occurrence of the Quercus section Cerris Spach fruits in the Miocene of China. Acta Palaeobot 40:153–163Google Scholar
  73. Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096CrossRefPubMedGoogle Scholar
  74. Sun Y, Hu HQ, Huang HW, Vargas-Mendoza CF (2014) Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genet Genome 10:1531–1539CrossRefGoogle Scholar
  75. Sun Y, Surget-Groba Y, Gao S (2016) Divergence maintained by climatic selection despite recurrent gene flow: a case study of Castanopsis carlesii (Fagaceae). Mol Ecol 18:4580–4592CrossRefGoogle Scholar
  76. Tian S, Lei SQ, Hu W, Deng LL, Li B, Meng QL, Soltis DE, Soltis PS, Fan DM, Zhang ZY (2015) Repeated range expansions and inter−/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. Et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Mol Phylogenet Evol 85:238–246CrossRefPubMedGoogle Scholar
  77. Vitelli M, Vessella F, Cardoni S, Pollegioni P, Denk T, Grimm GW, Simeone MC (2017) Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus group Ilex, Fagaceae). Tree Genet Genome 13:3CrossRefGoogle Scholar
  78. Wang PX, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian ZM, Kershaw P, Sarnthein M (2005) Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quat Sci Rev 24:595–629CrossRefGoogle Scholar
  79. Wang YH, Comes HP, Cao YN, Guo R, Mao YR, Qiu YX (2017) Quaternary climate change drives Allo-peripatric speciation and refugial divergence in the Dysosma versipellis-pleiantha complex from different forest types in China. Sci Rep 7:40261CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wei XZ, Sork VL, Meng HJ, Jiang MX (2016) Genetic evidence for central-marginal hypothesis in a Cenozoic relict tree species across its distribution in China. J Biogeogr 43:2173–2185CrossRefGoogle Scholar
  81. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  82. Xu J, Deng M, Jiang XL, Westwood M, Song YG, Turkington R (2015) Phylogeography of Quercus glauca (Fagaceae), a dominant tree of east Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet Genome 11:805CrossRefGoogle Scholar
  83. Xu J, Jiang XL, Deng M, Westwood M, Song YG, Zheng SS (2016) Conservation genetics of rare trees restricted to subtropical montane cloud forests in southern China: a case study from Quercus arbutifolia (Fagaceae). Tree Genet Genome 12:90CrossRefGoogle Scholar
  84. Yang J, Di XY, Meng X, Feng L, Liu ZL, Zhao GF (2016) Phylogeography and evolution of two closely related oak species (Quercus) from north and Northeast China. Tree Genet Genome 12:89CrossRefGoogle Scholar
  85. Ye QL, Zeng XY (2009) Optimization of SRAP-PCR system and genetic diversity analysis in Quercus acutissima Carr. Biotechnology 19:25–27Google Scholar
  86. Ye JW, Bai WN, Bao L, Wang TM, Wang HF, Ge JP (2017) Sharp genetic discontinuity in the aridity-sensitive Lindera obtusiloba (Lauraceae): solid evidence supporting the tertiary floral subdivision in East Asia. J Biogeogr 44:2082–2095CrossRefGoogle Scholar
  87. Ye JW, Jiang T, Wang HF, Wang TM, Bao L, Ge JP (2018) Repeated expansions and fragmentations linked to Pleistocene climate changes shaped the genetic structure of a woody climber, Actinidia arguta (Actinidiaceae). Botany 96:19–31CrossRefGoogle Scholar
  88. Yeh FC, Yang R, Boyle T (1999) POPGENE, version 1.31: Microsoft Windows-based free software for population genetic analysis.
  89. Yin QZ, Guo ZT (2007) Strong summer monsoon during the cool MIS-13. Clim Past Discuss 3:1119–1132CrossRefGoogle Scholar
  90. You LX, Li Y, Yin ZF, Fang YM (2017) The study of sawtooth oak in China: provenance test, afforestation and forest management. World For Res 30:75–79 (in Chinese with English abstract)Google Scholar
  91. Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ (2017) Insights into the historical assembly of east Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol 215:1235–1248CrossRefPubMedGoogle Scholar
  92. Zeng YF, Wang WT, Liao WJ, Wang HF, Zhang DY (2015) Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study. Mol Ecol 24:5676–5691CrossRefPubMedGoogle Scholar
  93. Zhang YY, Fang YM, Yu MK, Li XX, Xia T (2013a) Molecular characterization and genetic structure of Quercus acutissima germplasm in China using microsatellites. Mol Biol Rep 40:4083–4090CrossRefPubMedGoogle Scholar
  94. Zhang YY, Fang YM, Yu MK, Zhou XL (2013b) Molecular characterization of sawtooth oak (Quercus acutissima) germplasm based on randomly amplified polymorphic DNA. Plant Syst Evol 299:1829–1837CrossRefGoogle Scholar
  95. Zhang XW, Li Y, Fang YM (2014a) Geographical distribution and prediction of potential ranges of Quercus acutissima in China. Acta Botan Boreal-Occiden Sin 34:1685–1692 (in Chinese with English abstract)Google Scholar
  96. Zhang YB, Sun DH, Li ZJ, Wang F, Wang X, Li BF, Guo F, Wu S (2014b) Cenozoic record of aeolian sediment accumulation and aridification from Lanzhou, China, driven by Tibetan Plateau uplift and global climate. Glob Planet Chang 120:1–15CrossRefGoogle Scholar
  97. Zhang XW, Li Y, Liu CY, Xia T, Zhang Q, Fang YM (2015) Phylogeography of the temperate tree species Quercus acutissima in China: inferences from chloroplast DNA variations. Biochem Syst Ecol 63:190–197CrossRefGoogle Scholar
  98. Zhao YJ, Yin GS, Pan YZ, Gong X (2018) Ecological and genetic divergences with gene flow of two sister species (Leucomeris decora and Nouelia insignis) driving by climatic transition in Southwest China. Front Plant Sci 9:31CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhou ZK (1993) The fossil history of Quercus. Acta Bot Sin 15:21–33 (in Chinese with English abstract)Google Scholar
  100. Zhou YF, Abbott RJ, Jiang ZY, Du FK, Milne RI, Liu JQ (2010) Gene flow and species delimitation: a case study of two pine species with overlapping distributions in Southeast China. Evolution 64:2342–2352PubMedGoogle Scholar
  101. Zhou Y, Duvaux L, Ren G, Zhang L, Savolainen O, Liu J (2017) Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118:211–220CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
  2. 2.College of Life SciencesHuaibei Normal UniversityHuaibeiChina

Personalised recommendations