Advertisement

Tree Genetics & Genomes

, 14:71 | Cite as

Performance of multi-trait genomic selection for Eucalyptus robusta breeding program

  • Tahina Rambolarimanana
  • Lolona Ramamonjisoa
  • Daniel Verhaegen
  • Jean-Michel Leong Pock Tsy
  • Laval Jacquin
  • Tuong-Vi Cao-Hamadou
  • Garel Makouanzi
  • Jean-Marc Bouvet
Original Article
  • 160 Downloads
Part of the following topical collections:
  1. Breeding

Abstract

In forest tree genetic improvement, multi-trait genomic selection (GS) may have advantages in improving the accuracy of the genotype estimation and shortening selection cycles. For the breeding of Eucalyptus robusta, one of the most exotic planted species in Madagascar, volume at 49 months (V49), total lignin (TL), and holo-cellulose (Holo) were considered. For GS, 2919 single nucleotide polymorphisms (SNP) were used with the genomic best linear unbiased predictor (GBLUP) method, which was as efficient as the reproducing kernel Hilbert space (RKHS) and elastic net methods (EN), but more adapted to multi-trait modeling. The efficiency of individual I model, including the genomic data, was much higher than the provenance effect P model. For example, with V49, mean goodness-of-fit was: rI_Full = 0.79, rP_Full = 0.37 for I and P, respectively. The prediction accuracies using the cross-validation procedure were lower for V49: rI = 0.29 rP = 0.28. The genetic gains resulting from the indexes associating (V49, TL) and (V49, Holo) were higher using I than for the P model; for V49, the relative genetic gain was 37 and 20%, respectively, with 5% of selection intensity. The single-trait approach was as efficient as the multi-trait approach given the weak correlations between V49 and TL or Holo. The I model also brings greater diversity: for V49 the number of provenances represented in a selected population was two and three with the P model, and 6 and 16 with the I model.

Keywords

GBLUP Selection index Lignin Cellulose Genetic diversity Madagascar 

Notes

Acknowledgements

This study was conducted within the framework of the PhD fellowship funded by CIRAD for the research platform in the “Forest and Biodiversity in Madagascar” partnership. Field experiments were conducted at FOFIFA, the forest experimental station of Mahela in Madagascar in the framework of the E. robusta breeding program. Near infrared spectroscopy analyses were performed under the technical supervision of Gilles Chaix in the CIRAD laboratories in Montpellier, France. We thank our colleagues in Madagascar for their valuable help in sampling. We also thank the two reviewers for their valuable comments and suggestions to improve the first version of the manuscript.

Data archiving statement

Data will be available from the Dryad Digital Repository if the manuscript is accepted. The data will consist in two files: a file with the phenotype of the 415 trees and a file with the 2919 SNP for each of the tree.

Author contributions

Implementation and sampling: TR, JML, DV, and JMB; study and analysis design: TR, TC, JL, and JMB. TR and JMB supervised the writing and LR, TV, GM, and JML contributed ideas, comments, analyses, and revised manuscript versions.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11295_2018_1286_MOESM1_ESM.docx (61 kb)
ESM 1 (DOCX 60 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  3. Bouvet J-M, Makouanzi G, Cros D, Vigneron P (2015) Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity 116:146–157.  https://doi.org/10.1038/hdy.2015.78 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Calus M, Veerkamp R (2011) Accuracy of multi-trait genomic selection using different methods. Genet Sel Evol 43:26CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chaix G, Gerber SA, Razafimaharo V, Vigneron P, Verhaegen D, Hamon S (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712CrossRefPubMedGoogle Scholar
  6. Cros D, Denis M, Bouvet J-M, Sanchez L (2015) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16(651):16.  https://doi.org/10.1186/s12864-015-1866-9 CrossRefGoogle Scholar
  7. Cros D, Denis M, Sanchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomies V, Riou V, Suryana E, Bouvet J-M (2015) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128(3):397–410.  https://doi.org/10.1007/s00122-014-2439-z CrossRefPubMedGoogle Scholar
  8. Denis M, Bouvet J-M (2011) Genomic selection in tree breeding: testing accuracy of prediction models including dominance effect. BMC Proc 5(Suppl 7):O13 http://www.biomedcentral.com/1753-6561/5/S7/O13 CrossRefPubMedCentralGoogle Scholar
  9. Denis M, Bouvet J-M (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9:37–51.  https://doi.org/10.1007/s11295-012-0528-1 CrossRefGoogle Scholar
  10. Denis M, Favreau B, Ueno S, Camus-Kulandaivelu L, Chaix G, Gion J-M, Nourrisier-Mountou S, Polidori J, Bouvet J-M (2013) Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla. Tree Genet Genomes 9(4):927–942.  https://doi.org/10.1007/s11295-013-0606-z CrossRefGoogle Scholar
  11. Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403CrossRefGoogle Scholar
  12. Gallais A, Poly J (1990) Théorie de la sélection en amélioration des plantes. Collection Sciences agronomiques, Masson, p 588 Google Scholar
  13. Gilmour AR, Gogel BJ, Cullis BR, and Thompson R (2009) ASReml User. Guide Release 3.0VSN International Ltd, Hemel HempsteadGoogle Scholar
  14. Grattapaglia D (2014) Breeding forest trees by genomic selection: current progress and the way forward. In: Tuberosa R, Graner A, Frison E (eds) Genomics of Plant Genetic Resources. Springer, Netherlands, pp 651–682CrossRefGoogle Scholar
  15. Grattapaglia D, Resende MDV (2010) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255CrossRefGoogle Scholar
  16. Guo G, Zhao F, Wang Y, Zhang Y, du L, Su G (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:30CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hamilton MG, Raymond CA, Harwood CE, Potts BM (2009) Genetic variation in Eucalyptus nitens pulpwood and wood shrinkage traits. Tree Genet Genomes 5:307–316CrossRefGoogle Scholar
  18. Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53(11):876–883CrossRefPubMedGoogle Scholar
  19. Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690CrossRefGoogle Scholar
  20. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49(1):12CrossRefGoogle Scholar
  21. Hein PRG, Bouvet J-M, Mandrou E, Vigneron P, Clair B, Chaix G (2012) Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood. Ann For Sci 69(6):681–691.  https://doi.org/10.1007/s13595-012-0186-3 CrossRefGoogle Scholar
  22. Higuchi T (1997) Biochemistry and molecular biology of wood. Springer-Verlag, HeidelbergCrossRefGoogle Scholar
  23. Hung TD, Brawner JT, Meder R, Lee DJ, Southerton S, Thinh HH, Dieters MJ (2015) Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F Muell. to support tree breeding in Vietnam. Ann For Sci 72:205–217CrossRefGoogle Scholar
  24. Isik F, Bartholomé J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L (2016) Genomic selection in maritime pine. Plant Sci 242:108–119.  https://doi.org/10.1016/j.plantsci.2015.08.006. http://prodinra.inra.fr/record/327160CrossRefPubMedGoogle Scholar
  25. Jacquin L, Cao TV, Ahmadi N (2016) A unified and comprehensible view of parametric and kernel methods for genomic prediction with application to rice. Front Genet 7:145.  https://doi.org/10.3389/fgene.2016.00145 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jannink JL (2010) Dynamics of long-term genomic selection. Genet Sel Evol 42:35.  https://doi.org/10.1186/1297-9686-42-35 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jia Y, Jannink J-L (2012) Multiple trait genomic selection methods increase genetic value prediction accuracy. Genetics 192:1513–1522.  https://doi.org/10.1534/genetics.112.144246 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Luan DT (2009) Genetic studies of Nile Tilapia (Oreochromis Niloticus) for farming in Northern Vietnam: growth, survival and cold tolerance in different farm environments. PhD theses. Norwegian University of Life SciencesGoogle Scholar
  29. Makouanzi G, Chaix G, Nourissier S, Vigneron P (2017) Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo. South Forests 80:151–158.  https://doi.org/10.2989/20702620.2017.1298015 CrossRefGoogle Scholar
  30. Mandrou E, Hein PRG, Villar E, Vigneron P, Plomion C, Gion J-M (2012) A candidate gene for lignin composition in Eucalyptus: cinnamoyl-CoA reductase (CCR). Tree Genet Genomes 8:353–364.  https://doi.org/10.1007/s11295-011-0446-7 CrossRefGoogle Scholar
  31. Marchal A, Legarra A, Tisne S, Carasco-Lacombe C, Manez A, Suryana E, Omoré A, Nouy B, Durand-Gasselin T, Sanchez L, Bouvet JM, Cros D (2016) Multivariate genomic model improves analysis of oil palm (Elaeis guineensis Jacq.) progeny tests. Mol Breed 36(1):1–13CrossRefGoogle Scholar
  32. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  33. Meuwissen TH, Mike Goddard ME (2010) Accurate Prediction of Genetic Values for Complex Traits by Whole-Genome Resequencing. Genetics 185:623–631CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mrode RA, Thompson R (2005) Linear models for the prediction of animal breeding values. CABI, UKCrossRefGoogle Scholar
  35. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154(2):555–561.  https://doi.org/10.1104/pp.110.161281 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann For Sci 63:813–821.  https://doi.org/10.1051/forest:2006080 CrossRefGoogle Scholar
  37. Razafimahatratra AR, Ramananantoandro T, Razafimaharo V, Chaix G (2016) Provenance and progeny performances and genotype environment interactions of Eucalyptus robusta grown in Madagascar. Tree Genet Genomes 12:38.  https://doi.org/10.1007/s11295-016-0999-6 CrossRefGoogle Scholar
  38. Robbins, MD, Staub, JE, Fazio, G (2002) Deployment of molecular markers for multi-trait selection in cucumber. In: Proceeding Cucurbitaceae American Society for Horticultural Science, p 41–47Google Scholar
  39. Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM (2011) Genetic variation in the chemical components of Eucalyptus globulus wood. G3 (Bethesda) 1:151–159.  https://doi.org/10.1534/g3.111.000372 CrossRefGoogle Scholar
  40. Tripiana V, Bourgeois M, Verhaegen D, Vigneron P, Bouvet J-M (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Can J For Res 37(4):773–785CrossRefGoogle Scholar
  41. Van Raden PM (2007) Genomic measures of relationship and inbreeding genomic measures of relationship and inbreeding. Interbull Bull 37:33–36Google Scholar
  42. Van Raden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–23 Google Scholar
  43. Verhaegen D, Randrianjafy H, Montagne P, Danthu P, Rabevohitra R, Tassin J, Bouvet JM (2011) Historique de l’introduction du genre Eucalyptus à Madagascar. Bois For Trop 309(3):17–25Google Scholar
  44. Vigneron P, Bouvet J-M (1997) Les eucalyptus. In : L'amélioration des plantes tropicales. Charrier André (ed.), Jacquot Michel (ed.), Hamon Serge (ed.), Nicolas Dominique (ed.). CIRAD, Montpellier, pp 267–290Google Scholar
  45. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS 101(26):9915–9920.  https://doi.org/10.1073/pnas.0401076101 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tahina Rambolarimanana
    • 1
    • 2
  • Lolona Ramamonjisoa
    • 1
  • Daniel Verhaegen
    • 2
    • 3
  • Jean-Michel Leong Pock Tsy
    • 2
    • 4
  • Laval Jacquin
    • 3
  • Tuong-Vi Cao-Hamadou
    • 3
  • Garel Makouanzi
    • 5
  • Jean-Marc Bouvet
    • 2
    • 3
  1. 1.ESSA, Ecole Supérieure des Sciences AgronomiquesUniversité d’AntananarivoAntananarivoMadagascar
  2. 2.Dispositif de recherche et d’enseignement en partenariat “Forêts et Biodiversité à Madagascar”Cirad-FOFIFA-Université d’AntananarivoAntananarivoMadagascar
  3. 3.UMR AGAP, Amélioration Génétique et Adaptation des Plantes Tropicales et MéditerranéennesUniv Montpellier, CIRAD, INRA, Montpellier SupAgroMontpellierFrance
  4. 4.DRFGRN, Département des Recherches Forestières et de Gestion des Ressources NaturellesFOFIFAAntananarivoMadagascar
  5. 5.ENSAF, Ecole Supérieure des Sciences Agronomiques et ForestièresUniversité Marien NGOUABIBrazzavilleRépublique du Congo

Personalised recommendations