Tree Genetics & Genomes

, 14:53 | Cite as

Comparative assessment of genetic diversity in Albanian olive (Olea europaea L.) using SSRs from anonymous and transcribed genomic regions

  • Aida Dervishi
  • Jernej Jakše
  • Hairi Ismaili
  • Branka Javornik
  • Nataša Štajner
Original Article
Part of the following topical collections:
  1. Germplasm Diversity


A total of 560,578 sequencing reads obtained from the de novo NGS transcriptome sequencing of Olea europaea were searched for the presence of tri- and tetra-nucleotide repeat motifs, which resulted in 375 tri-nucleotide microsatellites and 252 tetra-nucleotides. Twelve expressed sequence tags (EST)-derived SSRs that gave a reproducible pattern, enabling easy scoring and allele size determination, were further tested for polymorphism on 165 cultivars O. europaea subsp. sativa and on 18 oleasters (O. europaea subsp. sylvestris). The main diversity parameters of EST-SSRs were compared to the genomic SSRs that have been most frequently used so far in olive genotyping and mapping studies. Diversity parameters were also compared for different lengths of repeat motifs (di-nucleotide, tri-nucleotide, and tetra-nucleotide microsatellites). The occurrence of null alleles was only observed in anonymous SSRs, while their frequencies were negative for all EST-SSR loci. Eight out of 12 EST-SSRs were classified as highly informative, indicating their applicability in assessing molecular diversity and genetic relatedness in olive. The 12 novel EST-SSR markers selected as a subset of all identified loci containing SSR motifs showed their suitability for evaluation of genetic diversity and population structure and for genetic mapping. They were also linked to genes and, as shown by annotation analysis, four of them have potential for interpretation of allelic variability related to disease resistance and can be evaluated as a potential diagnostic marker for disease resistance. The development of new EST-SSRs provides a valuable tool in molecular breeding programs for both cultivated and wild olives.


EST-SSR marker Genetic diversity Genotyping Functional annotation 


Author contributions

NŠ coordinated the study and BJ and JJ participated in its design. HI prepared the plant material. AD harvested and processed the samples. AD performed genotyping analyses together with NŠ and analyzed data together with NŠ and JJ. AD and NŠ interpreted the data and wrote the manuscript. All authors read and approved the manuscript.

Funding information

The research was funded by the Slovenian Research Agency through Grant P4-0077.

Supplementary material

11295_2018_1269_MOESM1_ESM.docx (139 kb)
ESM 1 (DOCX 139 kb)


  1. Adawy SS, Mokhtar MM, Alsamman AM, Sakr MM (2015) Development of annotated EST-SSR database in olive (Olea europaea). Int J Sci Res 4:1063–1073Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  3. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14CrossRefGoogle Scholar
  4. Arif IA, Khan HA, Shobrak M, Al Homaidan AA, Al Sadoon M, Al Farban AH, Bahkali AH (2010) Interpretation of electrophoretograms of seven microsatellite loci to determine the genetic diversity of Arabian Oryx. Genet Mol Res 9(1):259–265CrossRefPubMedGoogle Scholar
  5. Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, Vendramin GG, Buonamici A, Poceddu A, Sarri V, Ojeda MA, Trujillo I, Rallo L, Belaj A, Perri E, Salimonti A, Muzzalupo I, Casagrande A, Lain O, Messina R, Testolin R (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231CrossRefGoogle Scholar
  6. Bandelj D, Jakše J, Javornik B (2004) Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica 136:93–102CrossRefGoogle Scholar
  7. Belaj A, Cipriani G, Testolin R, Rallo L, Trujillo I (2004) Characterization and identification of main Spanish and Italian olive cultivars by simple-sequence-repeat markers. HortSci 39(7):1557–1561Google Scholar
  8. Belaj A, Munoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assesses by SSR markers. Ann Bot 100(3):449–458CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bosamia TC, Mishra GP, Thankappan R, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10(6):e0129127CrossRefPubMedPubMedCentralGoogle Scholar
  10. Breton CM, Farinelli D, Shafiq S, Heslop-Harrison JS, Sedgley M, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10(4):1055–1067CrossRefGoogle Scholar
  11. Butler JM (2006) Genetics and genomics of core short tandem repeats loci used in human identity testing. J Forensic Sci 51(2):253–265CrossRefPubMedGoogle Scholar
  12. Canonne J, Froidure-Nicolas S, Rivas S (2011) Phospholipases in action during plant defense signaling. Plant Signal Behav 6(1):13–18CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307CrossRefPubMedGoogle Scholar
  14. Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci 94(3):1041–1046CrossRefPubMedGoogle Scholar
  15. Choi H, Kim NH, Kim JH, Choi BS, Ahn I, Lee J, Yamg T (2011) Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res 35(4):399–412. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cipriani G, Marrazzo MT, Markoni R, Cimato A (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228CrossRefPubMedGoogle Scholar
  17. Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Pezzotti M (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121(8):1569–1585CrossRefPubMedGoogle Scholar
  19. Collani S, Galla G, Ramina A, Barcaccia G, Alagna F, Càceres EM, et al (2011) Self-incompatibility in olive: a new hypothesis on the S-locus genes controlling pollen-pistil interaction. In I workshop on floral biology and S-Incompatibility In Fruit Species. Acta Hortic 967:133–140Google Scholar
  20. Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Coppola M, Garonna A, Baldoni L, Scaloni A, Rao R (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12(1):86CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cruz F, Julca I, Gómez-Garrido J, Loska D, Marcet-Houben M, Cano E, Galán B, Frias L, Ribeca P, Derdak S, Gut M, Sánchez-Fernández M, García JL, Gut IG, Vargas P, Alioto TS, Gabaldón T (2016) Genome sequence of the olive tree, Olea europaea. GigaSci 5(1):29CrossRefGoogle Scholar
  22. De la Rosa R, James CM, Tobutt KR (2002) Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol Ecol Notes 2:265–267CrossRefGoogle Scholar
  23. De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Bervillé A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106(7):1273–1282CrossRefPubMedGoogle Scholar
  24. De la Rosa R, Belaj A, Munoz-Merida A, Trelles O, Ortiz-Martin I, Gonzales-Plaza JJ, Valpuesta V, Beuzon CR (2013) Development of EST-derived SSR markers with long -core repeat in olive and their use for paternity testing. J Am Soc Hortic Sci 138(4):290–296Google Scholar
  25. Delgado-Martinez FJ, Amaya I, Sanchez-Sevilla JF, Gomez-Jimenez MC (2012) Microsatellite marker-based identification and genetic relationships of olive cultivars from Extremadura region of Spain. Genet Mol Res 11(2):918–932CrossRefPubMedGoogle Scholar
  26. Díaz A, De la Rossa R, Martín A, Rallo P (2006) Development, characterization and inheritance of new microsatellites in olive (Olea europaea L.) and evaluation of their usefulness in cultivar identification and genetic relationship studies. Tree Genet Genomes 2:165–175CrossRefGoogle Scholar
  27. Díez CM, Trujillo I, Barrio E, Belaj A, Barranco D, Rallo L (2011) Centennial olive trees as reservoir of genetic diversity. Ann Bot 108:797–807CrossRefPubMedPubMedCentralGoogle Scholar
  28. Doveri S, Sabino-Gil B, Diaz A, Reale S, Busconi M, Da Camara Machado A, Martin A, Forgher C, Donini P, LE D (2008) Standardization of a set of microsatellite markers for use in cultivar identification studies in olive (Olea europaea L.). Sci Hortic 116:367–373CrossRefGoogle Scholar
  29. El Aabidine AZ, Charafi J, Grout C, Doligez A, Santoni S, Moukhli A, Khadari B (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50(6):2291–2302CrossRefGoogle Scholar
  30. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132CrossRefPubMedGoogle Scholar
  31. Fendri M, Trujillo I, Trigui A, Rodriguez-Gracía MI, de Dioz Ramirez J (2010) Simple sequence repeat identification and endocarp characterization of olive tree accessions in Tunisian germplasm collection. HortSci 45(10):1429–1436Google Scholar
  32. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fujimori S, Washio T, Higo K, Ohtomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S, Tomita M (2003) A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Lett 554(1–2):17–22CrossRefPubMedGoogle Scholar
  34. Gadaleta A, Mangini G, Mule G, Bianco A (2007) Characterization of dinucleotide and trinucleotide EST-derived microsatellites in the wheat genome. Euphytica 153:73–85CrossRefGoogle Scholar
  35. Giampetruzzi A, Morelli M, Saponari M, Loconsole G, Chiumenti M, Boscia D, Savino VN, Martinelli GP, Saldarelli P (2016) Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genomics 17(1):475CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gomes S, Martins-Lopes P, Lopes L, Guedes-Pinto H (2009) Assessing genetic diversity in Olea europaea L, using ISSR and SSR markers. Plant Mol Biol Rep 123:82–89Google Scholar
  37. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guerfel M, Beis A, Zotos T, Boujnah D, Zarrouk M, Patakas A (2009) Differences in abscisic acid concentration in roots and leaves of two young Olive (Olea europaea L.) cultivars in response to water deficit. Acta Physiol Plant 31(4):825–831CrossRefGoogle Scholar
  39. Hanai LR, Santini L, Camargo LEA, Fungaro MHP, Gepts P, Tsai SM, Vieira MLC (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25(1):25–45CrossRefPubMedGoogle Scholar
  40. Hu J, Li J, Liang F, Liu L, Si S (2010) Genetic relationship of a cucumber germplasm collection revealed by newly developed EST-SSR marker. J Genet 89(2):28–32Google Scholar
  41. Ipek M, Sahin N, Ipak A, Cansev A, Simon PW (2015) Development and validation of new SSR markers from expressed regions in the garlic genome. Sci Agric 72(1):41–45CrossRefGoogle Scholar
  42. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1006CrossRefPubMedGoogle Scholar
  43. Kapustin Y, Souvorov A, Tatusova T, Lipman D (2008) Splign: algorithms for computing spliced alignments with identification of paralogs. Biol Direct 3:20CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kump B, Javornik B (1996) Evaluation of genetic variability among common buckwheat (Fagopyrum esculentum Moench) populations by RAPD markers. Plant Sci 114:149–158CrossRefGoogle Scholar
  45. La Mantia M, Lain O, Caruso T, Testolin R (2005) SSR-Based DNA fingerprints reveal the genetic diversity of Sicilian olive (Olea europaea L.) germplasm. J Hortic Sci Biotechnol 80(5):628–632CrossRefGoogle Scholar
  46. Las Casas G, Scollo F, Distefano G, Continella A, Gentile A, La Malfa S (2014) Molecular characterization of olive (Olea europaea L.) Sicilian cultivars using SSR markers. Biochem Syst Ecol 57:15–19CrossRefGoogle Scholar
  47. Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007CrossRefPubMedGoogle Scholar
  48. Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J (2016a) A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata ). J Genet 95(3):527–535. CrossRefPubMedGoogle Scholar
  49. Liu F, Hu Z, Liu W, Li J, Wang W, Liang Z, Sun X (2016b) Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development. Sci Rep 6:18947CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lopes MS, Mendonça D, Sefc KM, Sabino-Gil F, de Camara-Machado A (2004) Genetic evidence of intra-cultivar variability with Iberian olive cultivars. HortSci 39(7):1562–1565Google Scholar
  51. Mariotti R, Cultrera NGM, Mousavi S, Baglivo F, Rossi M, Albertini E, Alagna F, Carbone F, Perrota G, Baldoni L (2016) Development, evaluation, and validation of new EST-SSR markers in olive (Olea europaea L.). Tree Genet Genomes 12(6):120CrossRefGoogle Scholar
  52. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528CrossRefPubMedPubMedCentralGoogle Scholar
  53. Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 1:33(Web Server Issue):W677–W680. (
  54. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1997) MICROSAT: A Computer program for Calculating Various Statistics on Microsatellite Allele Data, ver. 1.5.d. Stanford University, StanfordGoogle Scholar
  55. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefPubMedGoogle Scholar
  56. Muzzalupo I, Stefanizzi F, Salimonti A, Fallabella R, Perri E (2009) Microsatellite markers for the identification of a group of Italian olive accessions. Sci Agric 66(5):685–690CrossRefGoogle Scholar
  57. Muzzalupo I, Vendramin GG, Chiappetta A (2014) Genetic diversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci World J 2014:1–12CrossRefGoogle Scholar
  58. Naga BLRI, Mangamoori LN, Subramanyam S (2012) Identification and characterization of EST-SSRs in finger millet (Eleusine coracana (L.) Gaertn.). J Crop Sci and Biotechnol 15(1): 9-16.
  59. Noormohammadi Z, Hosseini-Mazinani M, Trujillo I, Rallo L, Belaj A, Sadeghizadeh M (2007) Identification and classification of main Iranian olive cultivars using microsatellite markers. HortSci 42(7):1545–1550Google Scholar
  60. Omrani-Sabbaghi A, Shahriari M, Falahati-Anbaran M, Mohammadi SA, Nankali A, Mardi M, Ghareyazie B (2007) Microsatellite Markers based assessment of genetic diversity in Iranian olive (Olea europaea L.) collections. Sci Hortic 112:439–4473CrossRefGoogle Scholar
  61. Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST data based as a source for molecular markers: Lessons from Helianthus. J Hered 97(5):381–388CrossRefPubMedGoogle Scholar
  62. Poljuha D, Sladonja B, Šetić E, Milotić A, Bandelj D, Jakše J, Javornik B (2008) DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers. Sci Hortic 115(3):223–230CrossRefGoogle Scholar
  63. Qu J, Liu J (2013) A genome-wide analysis of simple sequence repeats in maize and the development of polymorphism markers from next-generation sequence data. BMC Res Notes 7(6):403CrossRefGoogle Scholar
  64. Rallo P, Dorado G, Martin A (2000) Development of simple sequence repeats (SSRs) in olive tree (Olea europaea L.). Theor Appl Genet 101:984–989CrossRefGoogle Scholar
  65. Ramchiary N, Nguyen VD, Li X, Hong CP, Dhandapani V, Choi SR et al (2011) Genic microsatellite markers in Brassica rapa: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives. DNA Res 18(5):305–320CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rešetic T, Štajner N, Bandelj D, Javornik B, Jakše J (2013) Validation of candidate reference genes in RT-qPCR studies of developing olive fruit and expression analysis of four genes involved in fatty acids metabolism. Mol Breed 32:211. CrossRefGoogle Scholar
  67. Rotondi A, Cultrera NGM, Mariotti R, Baldoni L (2011) Genotyping and evaluation of local olive varieties of a climatically disfavoured region through molecular, morphological and oil quality parameters. Sci Hortic 130:562–569CrossRefGoogle Scholar
  68. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Methods in molecular biology, Bioinformatics methods and protocols, vol 132. Humana Press, Totowa, pp 365–386Google Scholar
  69. Sabino Gil F, Busconi M, Da Câmara Machado A, Fogher C (2006) Development and characterization of microsatellite loci from Olea europaea. Mol Ecol Notes 6:1275–1277CrossRefGoogle Scholar
  70. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234CrossRefPubMedGoogle Scholar
  71. Sefc KM, Lopes SM, Mendoça D, Rodrigues dos Santos M, Laimer Da Câmara Machado M, Da Câmara Machado A (2000) Identification of microsatellite loci in olive (Olea europaea) their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1193CrossRefPubMedGoogle Scholar
  72. Simko I (2009) Development of EST-SSR markers for study of population structure in Letucce (Lactuca sativa L.). J Hered 100(2):256–262CrossRefPubMedGoogle Scholar
  73. Sraphet S, Boonchanawiwat A, Thanyasiriwat T, Boonseng O, Tabata S, Sasamoto S et al (2011) SSR and EST-SSR-based genetic linkage map of cassava (Manihot esculenta Crantz). Theor Appl Genet 122(6):1161–1170CrossRefPubMedGoogle Scholar
  74. Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D (2009) A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 323(5917):1060–1063CrossRefPubMedGoogle Scholar
  75. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471CrossRefPubMedPubMedCentralGoogle Scholar
  76. Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422. CrossRefPubMedGoogle Scholar
  77. Tranbarger TJ, Kluabmongkol W, Sangsrakru D, Morcillo F, Tregear JW, Tragoonrung S, Billotte N (2012) SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeisguineensis. BMC Plant Biol 12:1. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Udupa S, Baum M (2001) High mutation rate and mutational bias at (TAA) n microsatellite loci in chickpea (Cicer arietinum L.). Mol Gen Genomics 265(6):1097–1103CrossRefGoogle Scholar
  79. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23(1):48–55CrossRefPubMedGoogle Scholar
  80. Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9(4):203–209CrossRefPubMedGoogle Scholar
  81. Wang Z, Li J, Luo Z et al (2011) Characterization and development of EST-derived SSR markers in cultivated sweet potato (Ipomoea batatas). BMC Plant Biol 11:139. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, Lv H, Zhang X (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants; principles, methods and applications, 2nd edn. CRC press Taylor and Francis Group, Boca Raton, pp 444Google Scholar
  84. Wen M, Wang H, Xia Z, Zou M, Lu C, Wenquan W (2010) Development of EST-SSR and genomic-SSR markers to asses genetic diversity in Jatropha curcas L. BMC Res Notes 3:42. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wu SB, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47(1):26–35CrossRefPubMedGoogle Scholar
  86. Zhang M, Mao W, Zhang G, Wu F (2014) Development and characterization of polymorphic of EST-SSR and genomic SSR markers for Tibetian annual wild barely. PlosONE 94:e94881CrossRefGoogle Scholar
  87. Zhao Y, Williams R, Prakash CS et al (2012) Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L). BMC Plant Biol 12:237. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology, Faculty of Natural SciencesUniversity of TiranaTiranaAlbania
  2. 2.Centre for Plant Biotechnology and Breeding, Agronomy DepartmentUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Gene BankUniversity of AgricultureTiranaAlbania

Personalised recommendations