Tree Genetics & Genomes

, 14:51 | Cite as

Resources for studies of iron walnut (Juglans sigillata) gene expression, genetic diversity, and evolution

  • Xiaojia Feng
  • Xiaoying Yuan
  • Yiwei Sun
  • Yiheng Hu
  • Saman Zulfiqar
  • Xianheng Ouyang
  • Meng Dang
  • Huijuan Zhou
  • Keith Woeste
  • Peng ZhaoEmail author
Original Article
Part of the following topical collections:
  1. Gene Expression


Iron walnut (Juglans sigillata Dode) is a temperate deciduous tree indigenous to China. It is distributed mainly in southwestern China, where it is valued for its wood and nuts. Transcriptomic and genomic data for the species are limited. Our goal was to assemble the whole chloroplast genome of J. sigillata, to use transcriptome information from RNA-Seq to understand the gene space in J. sigillata, and to develop polymorphic simple sequence repeats (SSRs, microsatellites) useful for understanding the species’ population genetics. The chloroplast genome consisted of a large single copy (LSC) of 89,872 bp, an inverted region (IR) of 52,072 bp, and a short single copy (SSC) of 18,406 bp. The chloroplast genome consisted of 137 annotated genes, with 71 unique coding regions and eight coding regions that were repeated in the inverted region. De novo assembly of the transcriptome yielded 83,112 unigenes with an average length of 686.9 bp. A search against the Gene Ontology (GO) database identified 19,718 unigenes. We evaluated transcriptome-derived microsatellite markers and chloroplast sequence polymorphisms in 48 J. sigillata individuals from three populations and 66 individuals from five other Chinese walnut (Juglans) species. We found 20 expressed sequence tag-SSRs and four loci in the chloroplast that were polymorphic in J. sigillata. The number of alleles per locus ranged from 3 to 10. The whole chloroplast genome and these 24 informative loci will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species.


Juglans sigillata Microsatellites Transcriptome Chloroplast Iron Walnut 



Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.

Funding information

This study was funded by the National Natural Science Foundation of China (41471038, 31200500), the Program for Excellent Young Academic Backbones funding by Northwest University (338050070), and the Northwest University Training Programs of Innovation and Entrepreneurship for Graduates (Nos. 2016002, 20171037, 2018298).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1263_MOESM1_ESM.xlsx (28 kb)
Table S1 (XLSX 27 kb)
11295_2018_1263_MOESM2_ESM.xlsx (13 kb)
Table S2 (XLSX 13 kb)
11295_2018_1263_MOESM3_ESM.docx (18 kb)
Table S3 (DOCX 17 kb)
11295_2018_1263_MOESM4_ESM.docx (16 kb)
Table S4 (DOCX 16 kb)
11295_2018_1263_MOESM5_ESM.xlsx (11 kb)
Table S5 (XLSX 10 kb)
11295_2018_1263_MOESM6_ESM.xlsx (13 kb)
Table S6 (XLSX 12 kb)
11295_2018_1263_MOESM7_ESM.xlsx (15 kb)
Table S7 (XLSX 14 kb)
11295_2018_1263_MOESM8_ESM.xlsx (11 kb)
Table S8 (XLSX 10 kb)
11295_2018_1263_MOESM9_ESM.xlsx (11 kb)
Table S9 (XLSX 11 kb)
11295_2018_1263_MOESM10_ESM.docx (23 kb)
Table S10 (DOCX 22 kb)
11295_2018_1263_MOESM11_ESM.xls (21 kb)
Table S11 (XLS 21 kb)
11295_2018_1263_MOESM12_ESM.pdf (34.8 mb)
Figure S1. a) Geographic distribution of three natural populations of Juglans sigillata and cluster analysis based on 20 EST-SSR. The pie charts indicate the sample collection locations (ArcMap version 10. 0; ESRI, 2010). The colors reflect three different genetic clusters as determined using STRUCTURE (Pritchard et al. 2000) and show color-coded grouping at the most likely K =3 as determined using the deltaK method of Evanno et al. (2005). The white frame pie charts indicate the six different genetic clusters as determined using STRUCTURE (Pritchard et al. 2000) and show color-coded grouping at the most likely K =6 as determined using the deltaK method of Evanno et al. (2005). b) Principal coordinate analyses (PCA) of three populations resolved into three genotype groups based on 20 microsatellite loci. (PDF 35596 kb)
11295_2018_1263_MOESM13_ESM.pdf (4.8 mb)
Figure S2: Nucleotide sequence variation of 66 individuals of five Chinese walnut (Juglans) species at six polymorphic loci. psbM-trnD [16 single nucleotide polymorphism (SNP)], trnE-UUC (26 SNPs), ycf3-trnS(9 SNPs), trnF-ndhJ (40 SNPs), psbA-trnK (2 SNPs), and rpoC1 (36 SNPs). Haplotypes from H1 to H21 are shown to the left of individual names (Table S3). (PDF 4870 kb)
11295_2018_1263_MOESM14_ESM.pdf (150 kb)
Figure S3: Nucleotide sequence variation of J. sigillata based on four chloroplast loci. psbM-trnD [7 single nucleotide polymorphism (SNP)], trnE-UUC (one SNP), ycf3-trnS(one SNP), and rpoC1 (one SNP). (PDF 149 kb)


  1. Adal AM, Demissie ZA, Mahmoud SS (2015) Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. Planta 241:987–1004CrossRefPubMedGoogle Scholar
  2. Aradhya MK, Potter D, Simon CJ (2004) Origin, evolution, and biogeography of Juglans: a phylogenetic perspective. Int Walnut Symposium 4:85–94Google Scholar
  3. Arbeiter AB, Hladnik M, Jakše J, Bandelj D (2017) Identification and validation of novel EST-SSR markers in olives. Sci Agric 74:215–225CrossRefGoogle Scholar
  4. Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901CrossRefPubMedGoogle Scholar
  5. Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Nat Acad Sci 92:11331–11338CrossRefPubMedGoogle Scholar
  6. Bodénès C, Chancerel E, Gailing O, Vendramin GG, Bagnoli F, Durand J, Goicoechea PG, Soliani C, Villani F, Mattioni C, Koelewijn HP, Murat F, Salse J, Roussel G, Boury C, Alberto F, Kremer A, Plomion C (2012) Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol 12:153CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bradbury D, Smithson A, Krauss SL (2013) Signatures of diversifying selection at EST-SSR loci and association with climate in natural Eucalyptus populations. Mol Ecol 22:5112–5129CrossRefPubMedGoogle Scholar
  8. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  10. Dang M, Liu ZX, Chen X, Zhang T, Zhou HJ, Hu YH, Zhao P (2015) Identification, development, and application of 12 polymorphic EST-SSR markers for an endemic Chinese walnut (Juglans cathayensis L.) using next-generation sequencing technology. Biochem Syst Ecol 60:74–80CrossRefGoogle Scholar
  11. Dang M, Zhang T, Hu Y, Zhou H, Woeste KE, Zhao P (2016) De novo assembly and characterization of bud, leaf and flowers transcriptome from Juglans regia L. for the identification and characterization of new EST-SSRs. Forests 7:247CrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herrán A, Ikaran Z (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  15. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132CrossRefPubMedGoogle Scholar
  16. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  17. Goudet J (2001) FSTAT (version 2.9.3.): a program to estimate and test gene diversities and fixation indices
  18. Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren B, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechno l29:644–652CrossRefGoogle Scholar
  19. Greiner S, Sobanski J, Bock R (2015) Why are most organelle genomes transmitted maternally? Cell Mol Biol 37:80–94Google Scholar
  20. Gu M, Chen HP, Zhao MM, Wang X, Yang B, Ren JY, Su GW (2015) Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci Technol 60:213–220CrossRefGoogle Scholar
  21. Gunn BF, Aradhya M, Salick JM, Miller AJ, Yang YP, Liu L, Hai H (2010) Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:660–671CrossRefPubMedGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  23. Han H, Woeste KE, Hu YH, Dand M, Zhang T, Gao XX, Zhou HJ, Feng XJ, Zhao GF, Zhao P (2016) Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL). Tree Genet Genomes 12:111CrossRefGoogle Scholar
  24. Hoban SM, Borkowski DS, Brosi SL, McCleary T, Thompson LM, Mclachlan JS, Pereira MA, Schlarbaum SE, Romero-severson J (2010) Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol Ecol 19:4876–4891CrossRefPubMedGoogle Scholar
  25. Hu YH, Woeste KE, Zhao P (2017) Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny. Front Plant Sci 7:1955CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hu YH, Zhao P, Zhang Q, Wang Y, Gao XX, Zhang T, Zhou HJ, Dang M, Woeste KE (2015) De novo assembly and characterization of transcriptome using Illumina sequencing and development of twenty five microsatellite markers for an endemic tree Juglans hopeiensis Hu in China. Biochem Syst Ecol 63:201–211CrossRefGoogle Scholar
  27. Hu Z, Zhang T, Gao XX, Wang Y, Zhang Q, Zhou HJ, Zhao GF, Wang ML, Woeste KE, Zhao P (2016) De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing. Mol Gen Genomics 291:849–862CrossRefGoogle Scholar
  28. Izzah NK, Lee J, Jayakodi M, Perumal S, Jin M, Park B, Ahn K, Yang T (2014) Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genomics 15:149CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jiang B, Xie D, Liu W, Peng Q, He X (2013) De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida). PLoS One 8:e71054CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jiang Q, Wang F, Tan HW, Li MY, Xu ZS, Tan GF, Xiong S (2015) De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol Gen Genomics 290:671–683CrossRefGoogle Scholar
  31. Kaur S, Cogan NO, Pembleton LW, Shinozuka M, Savin KW, Materne M, Forster JW (2011) Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12:265CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kearse M, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  33. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  34. Lu AM (1982) The geographical dispersal of Juglandaceae. Acta Phytotaxon Sin 20:257–274Google Scholar
  35. Manning WE (1978) The classification within the Juglandaceae. Ann Mo Bot Gard 65:1058–1087CrossRefGoogle Scholar
  36. Martínez-García PJ, Crepeau MW, Puiu D, Gonzalez-Ibeas D, Whalen J, Stevens KA, Paul P, Butterfield TS, Britton MT, Regan RL, Chakraborty S, Walawage SL, Vasquez-Gross HA, Cardeno C, Famula RA, Pratt K, Kuruganti S, Aradhya MK, Leslie CA, Dandekar AM, Salzberg SL, Wegrzyn JL, Langley CH, Neale DB (2016) The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of nonstructural polyphenols. Plant J 87:507–532CrossRefPubMedGoogle Scholar
  37. Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenergy Res 1:136–146CrossRefGoogle Scholar
  38. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pollegioni P, Woeste KE, Chiocchini F, Olimpieri I, Tortolano V, Clark J, Hemery GE, Mapelli S, Malvolti ME (2014) Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genomes 10:1027–1043CrossRefGoogle Scholar
  41. Pollegioni P, Woeste K, Chiocchini F, Del Lungo S, Ciolfi M, Olimpieri I, Tortolano V, Clark J, Hemery GE, Mapelli S, Malvolti ME (2017) Rethinking the history of common walnut (Juglans regia L.) in Europe: its origins and human interactions. PloS ONE 12:e017254CrossRefGoogle Scholar
  42. Provana J, Powellb W, Hollingsworthc PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147CrossRefGoogle Scholar
  43. Raymon M (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  44. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Resour 4:137–138CrossRefGoogle Scholar
  45. Sloan DB, Keller SR, Berardi AE, Sanderson BJ, Karpovich JF, Taylor DR (2012) De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae). Mol Ecol Resour 12:333–343CrossRefPubMedGoogle Scholar
  46. Yuan Y, Bayer PE, Batley J, Edwards D (2017) Improvements in genomic technologies: application to crop genomics. Trends Biotechnol 35:547–558CrossRefPubMedGoogle Scholar
  47. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting and genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538CrossRefGoogle Scholar
  48. Victory ER, Glaubitz JC, Rhodes OE Jr, Woeste K (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126CrossRefGoogle Scholar
  49. Wang H, Pan G, Ma Q, Zhang J, Pei D (2015) The genetic diversity and introgression of Juglans regia and Juglans sigillata in Tibet as revealed by SSR markers. Tree Genet Genomes 11(1)Google Scholar
  50. Weckerle C, Huber F, Yang YP, Sun WB (2005) Walnuts among Shuhi in Shuiluo, eastern Himalayas: notes on economic plants. Econ Bot 59:287–290CrossRefGoogle Scholar
  51. Wei C, Tao X, Li M, He B, Yan L, Zhang Y (2015) De novo transcriptome assembly of Ipomoea nil using Illumina sequencing for gene discovery and SSR marker identification. Mol Gen Genomics 290:1873–1884CrossRefGoogle Scholar
  52. Wheeler GL, Dorman HE, Buchanan A, Challagundla L, Wallace LE (2014) A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology. Appl Plant Sci 2:1400059CrossRefGoogle Scholar
  53. Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 13:90CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhang R, Zhu AD, Wang XF, Yu J, Zhang HR, Gao JS, Cheng YJ, Deng XX (2010) Development of Juglans regia SSR markers by data mining of the EST database. Plant Mol Biol Report 28:646–653CrossRefGoogle Scholar
  55. Zhou ZC, Dong Y, Sun HJ, Yang AF, Chen Z, Gao S, Jiang JW, Guan XY, Jiang B, Wang B (2014) Transcriptome sequencing of sea cucumber (Apostichopus japonicus) and the identification of gene-associated markers. Mol Ecol Resour 14:127–138CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojia Feng
    • 1
  • Xiaoying Yuan
    • 1
  • Yiwei Sun
    • 1
  • Yiheng Hu
    • 1
  • Saman Zulfiqar
    • 1
  • Xianheng Ouyang
    • 1
  • Meng Dang
    • 1
  • Huijuan Zhou
    • 1
  • Keith Woeste
    • 2
  • Peng Zhao
    • 1
    Email author
  1. 1.Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life SciencesNorthwest UniversityXi’anChina
  2. 2.USDA Forest Service Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA

Personalised recommendations