Tree Genetics & Genomes

, 14:49 | Cite as

Historical range contraction, and not taxonomy, explains the contemporary genetic structure of the Australian tree Acacia dealbata Link

  • Heidi HirschEmail author
  • David M. Richardson
  • Fiona A. C. Impson
  • Catharina Kleinjan
  • Johannes J. Le Roux
Original Article
Part of the following topical collections:
  1. Population structure


Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.


Biological invasions Fabaceae Genetic diversity and structure Microsatellites Tree invasions 



We thank M.J. Mathese and P.H. Du Preez for their assistance in the laboratory, L. Gallien for advice on statistical approaches, and C. Gairifo, J. Ndlovu, and J.R.U. Wilson for assistance with collecting and/or providing samples used in this study.


Funding for this study was provided by the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through the collaborative research project “Integrated Management of invasive alien species in South Africa,” a Subcommittee B grant from Stellenbosch University (to JLR), and the Drakenstein Trust. Additional support was provided by the DST-NRF Centre of Excellence for Invasion Biology, Stellenbosch University, and the National Research Foundation of South Africa (grant 85417 to DMR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2018_1262_MOESM1_ESM.docx (493 kb)
ESM 1 (DOCX 492 kb)
11295_2018_1262_MOESM2_ESM.xlsx (19 kb)
ESM 2 (XLSX 19 kb)


  1. Alba-Sánchez F, López-Sáez JA, BB-d P, Linares JC, Nieto-Lugilde D, López-Merino L (2010) Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution models. Divers Distrib 16:214–228CrossRefGoogle Scholar
  2. Broadhurst LM, Young AG (2006) Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in Southeast Australia. Biol Conserv 133:512–526CrossRefGoogle Scholar
  3. Broadhurst LM, North T, Young AG (2006) Should we be more critical of remnant seed sources being used for revegetation? Ecol Manag Restor 7:211–217CrossRefGoogle Scholar
  4. Broadhurst LM, Young AG, Forrester R (2008) Genetic and demographic responses of fragmented Acacia dealbata (Mimosaceae) populations in southeastern Australia. Biol Conserv 141:2843–2856CrossRefGoogle Scholar
  5. Bryne M, Macdonald B, Francki M (2001) Incorporation of sodium sulfite into extraction protocol minimizes degradation of Acacia DNA. Biotechniques 30:742–742 748CrossRefGoogle Scholar
  6. Butcher PA, McDonald MW, Bell JC (2009) Congruence between environmental parameters, morphology and genetic structure in Australia’s most widely distributed eucalypt, Eucalyptus camaldulensis. Tree Genet Genomes 5:189–210CrossRefGoogle Scholar
  7. Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61:2925–2941CrossRefPubMedGoogle Scholar
  8. Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, Keogh JS, Melville J, Moritz C, Porch N, Sniderman JMK, Sunnucks P, Weston PH (2011) Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 38:1635–1656CrossRefGoogle Scholar
  9. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257PubMedPubMedCentralGoogle Scholar
  10. Cavers S, Telford A, Cruz FA et al (2013) Cryptic species and phylogeographical structure in the tree Cedrela odorata L. throughout the Neotropics. J Biogeogr 40:732–746CrossRefGoogle Scholar
  11. Chapple DG, Keogh JS, Hutchinson MN (2005) Substantial genetic substructuring in southeastern and alpine Australia revealed by molecular phylogeography of the Egernia whitii (Lacertilia: Scincidae) species group. Mol Ecol 14:1279–1292CrossRefPubMedGoogle Scholar
  12. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  13. Crandall KA, Bninda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  14. Doyle J, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  15. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  16. Duncan CJ, Worth JRP, Jordan GJ, Jones RC, Vaillancourt RE (2016) Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii. Heredity 116:99–106CrossRefPubMedGoogle Scholar
  17. Dyer AR, Rice KJ (1997) Evidence of spatial genetic structure in a California bunchgrass population. Oecologia 112:333–339CrossRefPubMedGoogle Scholar
  18. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  19. Eidesen PB, Ehrich D, Bakkestuen V, Alsos IG, Gilg O, Taberlet P, Brochmann C (2013) Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytol 200:898–910CrossRefPubMedGoogle Scholar
  20. Erst PJ (2017) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conversation. Accessed 24 Jan 2017
  21. Evanno F, Regneut S, Groudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  22. Gibson AL, Espeland EK, Wagner V, Nelson CR (2016) Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methologies. Evol Appl 9:1219–1228CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guillemaud T, Broadhurst L, Legoff I, et al (2015) Development of 23 polymorphic microsatellite loci in invasive silver wattle, Acacia dealbata (Fabaceae). Appl Plant Sci 3:apps.1500018Google Scholar
  24. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  25. Hirsch H, Zimmermann H, Ritz CM, Wissemann V, Wehrden H, Renison D, Wesche K, Welk E, Hensen I (2011) Tracking the origin of invasive Rosa rubiginosa populations in Argentina. Int J Plant Sci 172:530–540CrossRefGoogle Scholar
  26. Hirsch H, Gallien L, Impson FAC, Kleinjan C, Richardson DM, Le Roux JJ (2017) Unresolved native range taxonomy complicates inferences in invasion ecology: Acacia dealbata Link as an example. Biol Invasions 19:1715–1722CrossRefGoogle Scholar
  27. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155CrossRefGoogle Scholar
  28. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  29. Jay F, Manel S, Alvarez N et al (2012) Forecasting changes in population genetic structure of alpine plants in response to global warming. Mol Ecol 21:2354–2368CrossRefPubMedGoogle Scholar
  30. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  31. Jombart T (2015) An introduction to adegenet 2.0.0. Assessed 12 Feb 2017
  32. Jørgensen MH, Elameen A, Hofman N, Klemsdal S, Malaval S, Fjellheim S (2016) What’s the meaning of local? Using molecular markers to define seed transfer zones for ecological restoration in Norway. Evol Appl 9:673–684CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kamvar ZN, Tabima JF, Grunwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kamvar ZN, Brooks JC, Grunwald NJ (2015) Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208CrossRefPubMedPubMedCentralGoogle Scholar
  35. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788CrossRefGoogle Scholar
  36. Kodela PG, Tindale MD (2001) Acacia dealbata subsp. subalpina (Fabaceae: Mimosiodeae), a new species from South-Eastern Australia. Telopea 9:319–322CrossRefGoogle Scholar
  37. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci U S A 111:15296–15303CrossRefPubMedPubMedCentralGoogle Scholar
  38. Le Roux JJ, Wieczorek AM (2009) Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17CrossRefGoogle Scholar
  39. Le Roux JJ, Brown GK, Byrne M et al (2011) Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Divers Distrib 17:861–871CrossRefGoogle Scholar
  40. Le Roux JJ, Richardson DM, Wilson JRU, Ndlovu J (2013) Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha. BMC Ecol 13(37)Google Scholar
  41. Levin DA, Kerster HW (1974) Gene flow in seed plants. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology. Springer, Boston, pp 139–220CrossRefGoogle Scholar
  42. Leys M, Petit EJ, El-Bahloul Y, Liso C, Fournet S, Arnaud J-F (2014) Spatial genetic structure in Beta vulgaris subsp. maritime and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4:1828–1852CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lorenzo P, Gonzales L, Reigosa MJ (2010) The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Ann For Sci 67:101CrossRefGoogle Scholar
  44. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Evol Syst 15:65–95CrossRefGoogle Scholar
  45. Mahalanobis PC (1936) On the generalized distance in statistics. Proceedings of the National Institute of Sciences India 12:49–55Google Scholar
  46. Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142CrossRefPubMedGoogle Scholar
  47. Maslin BR (2015) Synoptic overview of Acacia sensu lato (Leguminosae: Mimosoideae) in East and Southeast Asia. The Gardens’ Bulletin Singapore 67:231–250CrossRefGoogle Scholar
  48. Mathiasen P, Premoli A (2016) Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion. Oecologia 181:607–619CrossRefPubMedGoogle Scholar
  49. Mijangos JL, Pacioni C, Spencer PBS, Craig MD (2015) Contributions of genetics to ecological restoration. Mol Ecol 24:22–37CrossRefPubMedGoogle Scholar
  50. Murray BR, Thrall PH, Woods MJ (2001) Acacia species and rhizobial interactions: implications for restoration of native vegetation. Ecol Manag Restor 2:213–219CrossRefGoogle Scholar
  51. Neville PG, Bossinger G, Ades PK (2010) Phylogeography of the world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia. J Biogeogr 37:179–192CrossRefGoogle Scholar
  52. Oksanen J, Blanchet FG, Friendly M, et al (2017) vegan: community ecology package. R package version 2.4–2.
  53. Pannell JR, Fields PD (2014) Evolution in subdivided plant populations: concepts, recent advances and future directions. New Phytol 201:417–432CrossRefPubMedGoogle Scholar
  54. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420CrossRefPubMedGoogle Scholar
  55. Peel B (2010) Rainforest restoration manual for south-eastern Australia. CSIRO PublishingGoogle Scholar
  56. Poynton RJ (2009) Tree planting in southern Africa. Other genera, vol 3. Department of Agriculture, Forestry and Fisheries, Pretoria, South AfricaGoogle Scholar
  57. Prentis PJ, Sigg DP, Raghu S, Dhileepan K, Pavasovic A, Lowe AJ (2009) Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Divers Distrib 15:1–9CrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:170–181Google Scholar
  59. Pyšek P, Hulme PE, Meyerson LA, et al (2013) Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB PLANTS 5:plt042Google Scholar
  60. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  61. Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094CrossRefGoogle Scholar
  62. Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias—a global experiment in biogeography. Divers Distrib 17:771–787CrossRefGoogle Scholar
  63. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  64. Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474CrossRefGoogle Scholar
  65. Sjöstrand AE, Sjödin P, Jakobsson M (2014) Private haplotypes can reveal local adaptation. BMC Genet 15:61CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tasmanian Landcare Group (2013) Restoring our landscape—a basic revegetation guide for fire-affected areas of Tasmania. Accessed 15 Mar 2017
  67. Thomas E, Jalonen R, Loo J, Boshier D, Gallo L, Cavers S, Bordács S, Smith P, Bozzano M (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75CrossRefGoogle Scholar
  68. Thompson GD, Robertson MP, Webber BL, Richardson DM, Le Roux JJ, Wilson JRU (2011) Predicting the sub-specific identity of invasive species using distribution models: Acacia saligna as an example. Divers Distrib 17:1001–1014CrossRefGoogle Scholar
  69. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  70. vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311CrossRefGoogle Scholar
  71. Varela S, Lobo JM, Hortal J (2011) Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr Palaeoclimatol Palaeoecol 310:451–463CrossRefGoogle Scholar
  72. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  73. Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographical and ecological isolation. Evolution 76:3403–3411CrossRefGoogle Scholar
  74. Warton DI, Hui FKC (2011) The arcsin is asinine: the analysis of proportions in ecology. Ecology 92:3–10CrossRefPubMedGoogle Scholar
  75. Weir BS (1996) Genetic data analysis II. Sinauer Associates, SunderlandGoogle Scholar
  76. Worth JRP, Jordan GJ, McKinnon GE, Vailancourt RE (2009) The major Australian cool temperate rainforest tree Nothofagus cunninghamii withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytol 182:519–532CrossRefPubMedGoogle Scholar
  77. Worth JRP, Jordan GJ, Marthick JR, McKinnon GE, Vaillancourt RE (2010) Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Mol Ecol 19:2949–2963CrossRefPubMedGoogle Scholar
  78. Worth JRP, Marthick JR, Jordan GJ, Vaillancourt RE (2011) Low but structured chloroplast diversity in Athosperma moschatum (Aterospermataceae) suggests bottlenecks in response to the Pleistocene glacials. Ann Bot 108:1247–1256CrossRefPubMedPubMedCentralGoogle Scholar
  79. Worth JRP, Williamson GJ, Sakaguchi S, Nevill PG, Jordan GJ (2014) Environmental niche modelling fails to predict Last Glacial Maximum refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates? Glob Ecol Biogeogr 23:1189–1197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Heidi Hirsch
    • 1
    Email author
  • David M. Richardson
    • 1
  • Fiona A. C. Impson
    • 2
    • 3
  • Catharina Kleinjan
    • 3
  • Johannes J. Le Roux
    • 1
  1. 1.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Plant Protection Research InstituteStellenboschSouth Africa
  3. 3.Plant Conservation Unit, Department of Biological SciencesUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations