Advertisement

Tree Genetics & Genomes

, 14:10 | Cite as

Linking phenotype, genotype and environment to unravel genetic components underlying cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii)

  • Carl Vangestel
  • Andrew J. Eckert
  • Jill L. Wegrzyn
  • J. Bradley St. Clair
  • David B. Neale
Original Article
Part of the following topical collections:
  1. Adaptation

Abstract

Global climate change may detrimentally affect future generations of numerous forest tree species, hampering their long-term sustainability if appropriate evolutionary responses remain lacking. To face these novel threats, conservation biologists are in need of a thorough understanding and identification of adaptive variation in key fitness traits. We here provide an elaborate synthesis of pre-existing and novel analyses of an association mapping, genecological and landscape genomic study integrating genotypic, environmental and phenotypic data to gain insights into the genetic basis of cold-hardiness adaptation in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Data were collected across part of the natural range for a total of 643 individuals. A landscape genomic approach revealed 28 putative non-neutral genes, although a variance partitioning analysis indicated only moderate power of this gene set in explaining cold-hardiness-related phenotypic variation, and suggests many important genes await discovery. Integrating these results within the entire phenotype-genotype-environment spectrum allowed us to delineate the six most promising candidate genes under selection. By combining genomic, phenotypic and environmental data, this study attempts to gain insights in the genetic basis of key adaptations, which may ultimately aid forestry managers to establish resilient ecosystems in face of future climate change.

Keywords

Coastal Douglas-fir Pseudotsuga menziesii Cold-hardiness Adaptation Landscape genomics 

Notes

Acknowledgements

We are indebted to John Liechty for his invaluable bioinformatics assistance. Funding for this project was made available through a U.S. Department of Agriculture National Research Initiative Plant Genome grant (04-712-0084). A postdoctoral fellowship from the Belgian American Educational Foundation (BAEF) and a travel grant from the Research Foundation–Flanders (FWO) was awarded to CV.

Data archiving statement

Genotypic, phenotypic and environmental data has been deposited in the Figshare Database and has been made accessible using the provisional DOI  https://doi.org/10.6084/m9.figshare.5167657.v1.

Supplementary material

11295_2017_1225_MOESM1_ESM.docx (5.8 mb)
ESM 1 (DOCX 5.80 mb)

References

  1. Aitken SN, Adams WT (1996) Genetics of fall and winter cold hardiness of coastal Douglas-fir in Oregon. Can J For Res 26(10):1828–1837.  https://doi.org/10.1139/x26-208 CrossRefGoogle Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111.  https://doi.org/10.1111/j.1752-4571.2007.00013.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19(6):1645–1661.  https://doi.org/10.1111/gcb.12181 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8(1):242–242.  https://doi.org/10.1186/1471-2164-8-242 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bansal S, St Clair JB, Harrington CA, Gould PJ (2015) Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): environmental and genetic considerations. Glob Chang Biol 21(10):3814–3826.  https://doi.org/10.1111/gcb.12958 CrossRefPubMedGoogle Scholar
  6. Barrett RDH, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12(11):767–780.  https://doi.org/10.1038/nrg3015 CrossRefPubMedGoogle Scholar
  7. Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29(4):449–459.  https://doi.org/10.1007/BF02712118 CrossRefPubMedGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B-Methodol 57:289–300Google Scholar
  9. Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLoS Genet 10(8):e1004412.  https://doi.org/10.1371/journal.pgen.1004412 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bigras FJ, S Colombo 2001 Conifer cold hardiness, Dordrecht, DOI:  https://doi.org/10.1007/978-94-015-9650-3
  11. Bragg JG, Supple MA, Andrew RL, Borevitz JO (2015) Genomic variation across landscapes: insights and applications. New Phytol 207(4):953–967.  https://doi.org/10.1111/nph.13410 CrossRefPubMedGoogle Scholar
  12. Breed MF, Ottewell KM, Gardner MG, Lowe AJ (2011) Clarifying climate change adaptation responses for scattered trees in modified landscapes. J Appl Ecol 48(3):637–641.  https://doi.org/10.1111/j.1365-2664.2011.01969.x CrossRefGoogle Scholar
  13. Chowdhury MEK, Choi B, Cho BK, Kim JB, Park SU, Natarajan S, Lim HS, Bae H (2013) Regulation of 4CL, encoding 4-coumarate: coenzyme A ligase, expression in kenaf under diverse stress conditions. Plant OMICS 6:254–262Google Scholar
  14. Colaneri AC, Jones AM (2014) The wiring diagram for plant G signaling. Curr Opin Plant Biol 22:56–64.  https://doi.org/10.1016/j.pbi.2014.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4):1411–1423.  https://doi.org/10.1534/genetics.110.114819 CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Kort H, Vandepitte K, Bruun HH, Closset-Kopp D, Honnay O, Mergeay J (2014) Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa. Mol Ecol 23(19):4709–4721.  https://doi.org/10.1111/mec.12813 CrossRefPubMedGoogle Scholar
  17. de Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23(8):2006–2019.  https://doi.org/10.1111/mec.12705 CrossRefPubMedGoogle Scholar
  18. Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882.  https://doi.org/10.1038/ncomms6882 CrossRefPubMedGoogle Scholar
  19. Eckert A, Maloney P, Vogler D, Jensen C, Mix A, Neale D (2015) Local adaptation at fine spatial scales: an example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genet Genomes 11:1–17CrossRefGoogle Scholar
  20. Eckert AJ, Bower AD, González-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19(17):3789–3805.  https://doi.org/10.1111/j.1365-294X.2010.04698.x CrossRefPubMedGoogle Scholar
  21. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal Douglas fir (Pseudotsuga menziesu var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182(4):1289–1302.  https://doi.org/10.1534/genetics.109.102350 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183(1):289–298.  https://doi.org/10.1534/genetics.109.103895 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci U S A 101(4):975–979.  https://doi.org/10.1073/pnas.0308064100 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Falconer DS, TFC Mackay 1996 Introduction to quantitative geneticsGoogle Scholar
  25. Fins L, ST Friedman, JV Brotschol 1992 Handbook of quantitative forest genetics, Dordrecht, DOI:  https://doi.org/10.1007/978-94-015-7987-2
  26. Forester BR, JR Lasky, HH Wagner, DL Urban 2017 Using genotype environment associations to identify multilocus local adaptation. bioRxiv:1–24. doi:  https://doi.org/10.1101/129460
  27. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334(6052):86–89.  https://doi.org/10.1126/science.1209271 CrossRefPubMedGoogle Scholar
  28. Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30(7):1687–1699.  https://doi.org/10.1093/molbev/mst063 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56(4):316–324.  https://doi.org/10.1198/000313002533 CrossRefGoogle Scholar
  30. Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230(5):1033–1046.  https://doi.org/10.1007/s00425-009-1003-6 CrossRefPubMedGoogle Scholar
  31. Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674.  https://doi.org/10.1074/jbc.275.8.5668 CrossRefPubMedGoogle Scholar
  32. González-Martinez SC, Krutovsky KV, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytol 170(2):227–238.  https://doi.org/10.1111/j.1469-8137.2006.01686.x CrossRefPubMedGoogle Scholar
  33. Guak S, Olsyzk DM, Fuchigami LH, Tingey DT (1998) Effects of elevated CO(2) and temperature on cold hardiness and spring bud burst and growth in Douglas-fir (Pseudotsuga menziesii). Tree Physiol 18(10):671–679.  https://doi.org/10.1093/treephys/18.10.671 CrossRefPubMedGoogle Scholar
  34. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195(1):205–220.  https://doi.org/10.1534/genetics.113.152462 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334(6052):83–86.  https://doi.org/10.1126/science.1209244 CrossRefPubMedGoogle Scholar
  36. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1(2):e26.  https://doi.org/10.1371/journal.pgen.0010026 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7(9):1008–1025.  https://doi.org/10.1111/eva.12149 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hijmans RJ, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  39. Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188(2):501–514.  https://doi.org/10.1111/j.1469-8137.2010.03380.x CrossRefPubMedGoogle Scholar
  40. Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3: Genes, Genomes, Genetics 2:1085–1093CrossRefGoogle Scholar
  41. IPCC (2013) Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, USAGoogle Scholar
  42. Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165(3):1489–1506PubMedPubMedCentralGoogle Scholar
  43. Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001a) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Timing of vegetative bud flush. Theor Appl Genet 102(8):1142–1151.  https://doi.org/10.1007/s001220000505 CrossRefGoogle Scholar
  44. Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001b) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102(8):1152–1158.  https://doi.org/10.1007/s001220000506 CrossRefGoogle Scholar
  45. Jones MR, Forester BR, Teufel AI, Adams RV, Anstett DN, Goodrich BA, Landguth EL, Joost S, Manel S (2013) Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations. Evolution 67(12):3455–3468.  https://doi.org/10.1111/evo.12237 CrossRefPubMedGoogle Scholar
  46. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23(3):482–490.  https://doi.org/10.1093/molbev/msj057 CrossRefPubMedGoogle Scholar
  47. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R, Klein EK, Ritland K, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15(4):378–392.  https://doi.org/10.1111/j.1461-0248.2012.01746.x CrossRefPubMedPubMedCentralGoogle Scholar
  48. Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir Pseudotsuga menziesii (Mirb.) Franco var. menziesii using allozyme and microsatellite markers. Tree Genet Genomes 5(4):641–658.  https://doi.org/10.1007/s11295-009-0216-y CrossRefGoogle Scholar
  49. Langlet O (1971) Two hundred years of genecology. Taxon 20(5/6):653–722.  https://doi.org/10.2307/1218596 CrossRefGoogle Scholar
  50. Le Corre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164(3):1205–1219PubMedPubMedCentralGoogle Scholar
  51. Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21(7):1548–1566.  https://doi.org/10.1111/j.1365-294X.2012.05479.x CrossRefPubMedGoogle Scholar
  52. Lee BH, Henderson DA, Zhu J-K (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17(11):3155–3175.  https://doi.org/10.1105/tpc.105.035568 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lepais O, Bacles CFE (2014) Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees. Mol Ecol 23(19):4671–4673.  https://doi.org/10.1111/mec.12906 CrossRefPubMedGoogle Scholar
  54. Li B, Ning L, Zhang J, Bao M, Zhang W (2015) Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response. Front Plant Sci 6:118PubMedPubMedCentralGoogle Scholar
  55. Lind BM, Friedline CJ, Wegrzyn J, Maloney PE, Vogler DR, Neale DB, Eckert A (2017) Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Englm.) across fine spatial scales of the Lake Tahoe Basin, USA. Mol Ecol 26(12):3168–3185.  https://doi.org/10.1111/mec.14106 CrossRefPubMedGoogle Scholar
  56. Lorenz WW, Sun F, Liang C, Kolychev D, Wang H, Zhao X, Cordonnier-Pratt MM, Pratt LH, Dean JF (2006) Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries. Tree Physiol 26(1):1–16.  https://doi.org/10.1093/treephys/26.1.1 CrossRefPubMedGoogle Scholar
  57. Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376.  https://doi.org/10.1111/j.1744-7909.2010.00892.x CrossRefPubMedGoogle Scholar
  58. Nadeau S, Meirmans PG, Aitken SN, Ritland K, Isabel N (2016) The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: the case of two white pines. Ecol Evol 6(24):8649–8664.  https://doi.org/10.1002/ece3.2550 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Narum SR, Hess JE (2011) Comparison of F(ST) outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194.  https://doi.org/10.1111/j.1755-0998.2011.02987.x CrossRefPubMedGoogle Scholar
  60. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122.  https://doi.org/10.1038/nrg2931 CrossRefPubMedGoogle Scholar
  61. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330.  https://doi.org/10.1016/j.tplants.2004.05.006 CrossRefPubMedGoogle Scholar
  62. O'Neill GA, Aitken SN, Adams WT (2000) Genetic selection for cold hardiness in coastal Douglas-fir seedlings and saplings. Can J For Res 30(11):1799–1807.  https://doi.org/10.1139/x00-114 CrossRefGoogle Scholar
  63. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin RP, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner APH 2017 Vegan: community ecology package. R package version 2.4–2Google Scholar
  64. Pardo-Diaz C, Salazar C, Jiggins CD (2015) Towards the identification of the loci of adaptive evolution. Methods Ecol Evol 6(4):445–464.  https://doi.org/10.1111/2041-210X.12324 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57(5):1182–1195.  https://doi.org/10.1111/j.0014-3820.2003.tb00327.x CrossRefPubMedGoogle Scholar
  66. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295.  https://doi.org/10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  67. Prunier J, Gerardi S, Laroche J, Beaulieu J, Bousquet J (2012) Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol Ecol 21(17):4270–4286.  https://doi.org/10.1111/j.1365-294X.2012.05691.x CrossRefPubMedGoogle Scholar
  68. R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  69. Rajora OP, Eckert AJ, Zinck JWR (2016) Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One 11(7):e0158691.  https://doi.org/10.1371/journal.pone.0158691 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rehfeldt GE, Jaquish BC, Sáenz-Romero C, Joyce DG, Leites LP, Bradley St Clair J, López-Upton J (2014) Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation. For Ecol Manag 324:147–157.  https://doi.org/10.1016/j.foreco.2014.02.040 CrossRefGoogle Scholar
  71. SAS Institute (2008) SAS/STAT User’s guide, version 9.2. Cary, NC: SAS Institute Inc. Google Scholar
  72. Schoville SD, Bonin A, François O, Lobreaux S, Melodelima C, Manel S (2012) Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Evol Syst 43(1):23–43.  https://doi.org/10.1146/annurev-ecolsys-110411-160248 CrossRefGoogle Scholar
  73. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB (2013) Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes 9(4):901–911.  https://doi.org/10.1007/s11295-013-0596-x CrossRefGoogle Scholar
  74. St Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot Rev Can Bot 84:1110–1121CrossRefGoogle Scholar
  75. St Clair JB, Mandel NL, Vance-Boland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96(7):1199–1214.  https://doi.org/10.1093/aob/mci278 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc Ser B Stat Methodol 64(3):479–498.  https://doi.org/10.1111/1467-9868.00346 CrossRefGoogle Scholar
  77. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445.  https://doi.org/10.1073/pnas.1530509100 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Travis JMJ, Münkemüller T, Burton OJ, Best A, Dytham C, Johst K (2007) Deleterious mutations can surf to high densities on the wave front of an expanding population. Mol Biol Evol 24(10):2334–2343.  https://doi.org/10.1093/molbev/msm167 CrossRefPubMedGoogle Scholar
  79. Trevaskis, B., D. J. Bagnall, M. H. Ellis, W. J. Peacock, and E. S. Dennis. 2003. MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences 100:13099–13104Google Scholar
  80. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935.  https://doi.org/10.1046/j.1365-294X.2004.02076.x CrossRefPubMedGoogle Scholar
  81. Wang T, Hamann A, Spittlehouse D, Murdock TN (2012) ClimateWNA – high-resolution spatial climate data for western North America. J Appl Meteorol Climatol 61:16–29CrossRefGoogle Scholar
  82. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188(2):515–532.  https://doi.org/10.1111/j.1469-8137.2010.03415.x CrossRefPubMedGoogle Scholar
  83. Wheeler NC, Jermstad KD, Krutovsky K, Aitken SN, Howe GT, Krakowski J, Neale DB (2005) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Mol Breed 15(2):145–156.  https://doi.org/10.1007/s11032-004-3978-9 CrossRefGoogle Scholar
  84. White TL, WT Adams, DB Neale 2007 Forest genetics. Cambridge, DOI:  https://doi.org/10.1079/9781845932855.0000
  85. Yadav DK, Shukla D, Tuteja N (2014) Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). Plant Signal Behav 9(5):e28890.  https://doi.org/10.4161/psb.28890 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA, Smets P, Wang T, Gray LK, Liepe KJ, Hamann A, Holliday JA, Whitlock MC, Rieseberg LH, Aitken SN (2016) Convergent local adaptation to climate in distantly related conifers. Science 353(6306):1431–1433.  https://doi.org/10.1126/science.aaf7812 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.O.D. Taxonomy & PhylogenyRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Terrestrial Ecology UnitGhent UniversityGhentBelgium
  3. 3.Department of Plant SciencesUniversity of CaliforniaDavisUSA
  4. 4.Department of BiologyVirginia Commonwealth UniversityRichmondUSA
  5. 5.Department Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsUSA
  6. 6.USDA Forest Service, Pacific Northwest Research StationCorvallisUSA

Personalised recommendations