Tree Genetics & Genomes

, 13:119 | Cite as

Integrating genetics and suitability modelling to bolster climate change adaptation planning in Patagonian Nothofagus forests

  • P. Marchelli
  • E. Thomas
  • M. M. Azpilicueta
  • M. van Zonneveld
  • L. Gallo
Original Article
Part of the following topical collections:
  1. Adaptation


We investigated the impact of past changes in habitat suitability on the current patterns of genetic diversity of two southern beeches (Nothofagus nervosa and Nothofagus obliqua) in their eastern fragmented range in Patagonian Argentina, and model likely future threats to their population genetic structure. Our goal was to develop a spatially-explicit strategy for guiding conservation and management interventions in light of climate change. We combined suitability modelling under current, past (Last Glacial Maximum ~ 21,000 bp), and future (2050s) climatic conditions with genetic characterization data based on chloroplast DNA, isozymes, and microsatellites. We show the complementary usefulness of the distribution of chloroplast haplotypes and locally common allelic richness calculated from microsatellite data for identifying the locations of putative glacial refugia. Our findings suggest that contemporary hotspots of genetic diversity correspond to convergence zones of different expansion routes, most likely as a consequence of admixture processes. Future suitability predictions suggest that climate change might differentially affect both species. All genetically most diverse populations of N. nervosa and several of N. obliqua are located in areas that may be most severely impacted by climate change, calling for forward-looking conservation interventions. We propose a practical spatially- explicit strategy to target conservation interventions distinguishing priority populations for (1) in situ conservation (hotspots of genetic diversity likely to remain suitable under climate change), (2) ex situ conservation in areas where high genetic diversity overlaps with high likelihood of drastic climate change, (3) vulnerable populations (areas expected to be negatively affected by climate change), and (4) potential expansion areas under climate change.


Ecogeographic zones Ecological niche modelling Hotspots of genetic diversity Lophozonia Migration routes Phylogeography 



We are grateful to A. Martínez, M. Huentú, F. Barbero, M. Pastorino, A. Aparicio, and S. Zuki for helping in the collection of the vegetative material and to C. Moreno for laboratory assistance. Genotypes at Quilanlahue population were gently provided by G. Sola. Sampling of Nothofagus species in National Parks was authorized by the INTA-APN collaboration agreement. This research has been supported by the INIA—Spain financed project “Strengthening Regional Collaboration in Conservation and Sustainable Use of Forest Genetic Resources in Latin America and Sub-Saharan Africa” within the context of MAPFORGEN, by INTA (PNFOR 1104063 and 1104064) and by PIP11220110100891 CONICET, Argentina.

Funding information

We thank the CGIAR program on Forests Trees and Agroforestry for financial support.

Compliance with ethical standards

Data archiving statement

Genotypic data for the three genetic markers are provided as supplementary material (Table S3).

Supplementary material

11295_2017_1201_MOESM1_ESM.docx (8.5 mb)
ESM 1 (DOCX 8.52 mb)
11295_2017_1201_MOESM2_ESM.xlsx (226 kb)
ESM 2 (XLSX 225 kb)


  1. Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol Phylogenet Evol 54:235–242CrossRefPubMedGoogle Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alfaro RI et al (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manag 333:76–87. CrossRefGoogle Scholar
  4. Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci U S A 95:14839–14842CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arana MV, Gallo LA, Vendramin GG, Pastorino MJ, Sebastiani F, Marchelli P (2010) High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis. Mol Phylogenet Evol 54:941–949CrossRefPubMedGoogle Scholar
  6. Arana MV, Gonzalez-Polo M, Martinez-Meier A, Gallo LA, Benech-Arnold RL, Sánchez RA, Batla D (2016) Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia. New Phytol 209:507–520CrossRefPubMedGoogle Scholar
  7. Azpilicueta MM, Gallo LA (2009) Shaping forces modelling genetic variation patterns in the naturally fragmented forests of a South-American Beech. Biochem Syst Ecol 37:290–297CrossRefGoogle Scholar
  8. Azpilicueta MM, Gallo LA, Van Zonneveld M, Thomas E, Moreno C, Marchelli P (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424CrossRefGoogle Scholar
  9. Azpilicueta MM, Marchelli P, Gallo LA (2009) The effects of Quaternary glaciations in Patagonia as evidenced by chloroplast DNA phylogeography of Southern beech Nothofagus obliqua. Tree Genet Genomes 5:561–571CrossRefGoogle Scholar
  10. Azpilicueta MM, Pastorino MJ, Puntieri J, Barbero F, Martinez-Meier A, Marchelli P, Gallo LA (2014) Robles in Lagunas de Epulauquen, Argentina: previous and recent evidence of their distinctive character. Rev Chil Hist Nat 87:24–36CrossRefGoogle Scholar
  11. Becker M et al (2013) Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat Clim Change 3:1039–1043. CrossRefGoogle Scholar
  12. Braconnot P et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  13. Castañeda M, González M (2008) Statistical analysis of the precipitation trends in the Patagonian region in southern South America. Atmósfera 21:303–317Google Scholar
  14. Compagnucci RH (2011) Atmospheric circulation over Patagonia from the Jurassic to present: a review through proxy data and climatic modelling scenarios. Biol J Linn Soc 103:229–249CrossRefGoogle Scholar
  15. Crego P (1999) Variación genética en el comportamiento fenológico y el crecimiento juvenil de progeniespuras e híbridas de raulí, Nothofagus nervosa (Phil.) Dim. et Mil. Licenciatura en Ciencias Biológicas, Universidad Nacional del ComahueGoogle Scholar
  16. Chauchard L, Bava JO, Castañeda S, Laclau P, Loguercio GA, Pantaenius P, Rusch VE (2012) Manual para las buenas prácticas forestales e bosques nativos de Nordpatagonia. Ministerio de Agricultura, Ganadería y Pesca, Presidencia de la Nación Argentina,Google Scholar
  17. Donoso C (1993) Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica. Ecología Forestal. Editorial Universitaria, ChileGoogle Scholar
  18. Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Chang Biol 17:1022–1035CrossRefGoogle Scholar
  19. Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC (2016) Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Chang 16:927–939CrossRefGoogle Scholar
  20. FAO, IIASA, ISRIC, ISS-CAS, JRC (2012) Harmonized World Soil Database (version 1.2). FAO, Rome/IIASA, LuxemburgGoogle Scholar
  21. Fisichelli NA, Frelich LE, Reich PB (2013) Temperate tree expansion into adjacent boreal forest patches facilitated by warmer temperatures. Ecography 37:152–161CrossRefGoogle Scholar
  22. Folguera A et al (2011) A review of Late Cretaceous to Quaternary palaeogeography of the southern Andes. Biol J Linn Soc 103:250–268CrossRefGoogle Scholar
  23. Frankel OH, Brown AHD, Bordon J (1995) The genetic diversity of wild plants. In: Frankel OH, Brown AHD, Bordon J (eds) The conservation of plant biodiversity. Cambridge University Press, Cambrige, pp 10–38Google Scholar
  24. Gallo LA, Marchelli P, Breitembacher A (1997) Morphological and allozymic evidence of natural hibridization between two southern beeches (Nothofagus spp.) and its relation to heterozygosity and height growth. For Genet 4:15–23Google Scholar
  25. Gallo LA, Marchelli P, Crego P et al (2000) Distribución y variación genética en características seminales y adaptativas de poblaciones y progenies de raulí en Argentina. In: Domesticación y Mejora Genética de raulí y roble. Universidad Austral de Chile-Instituto Forestal, Valdivia, pp 133–156Google Scholar
  26. Gallo LA, Marchelli P, Chauchard L, Penalba MG (2009) Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests. Conserv Biol 23:895–898CrossRefPubMedGoogle Scholar
  27. Galluzzi, G, Dufour, D, Thomas, E, van Zonneveld, M, Escobar Salamanca, A.F., Giraldo Toro, A, Rivera, A, Salazar Duque, H, Suárez Baron, H, Gallego, G, Scheldeman, X, Gonzalez Mejia, Alonso. (2015). An Integrated Hypothesis on the Domestication of Bactris gasipaes. PLoS One, 10(12), e0144644.  https//
  28. Gillingham P, Huntley B, Kunin W, Thomas C (2012) The effect of spatial resolution on projected responses to climate warming. Divers Disrtrib 18:990–1000CrossRefGoogle Scholar
  29. Guisan A et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hampe A, Jump AS (2011) Climate relicts: past, present, future annual review of ecology. Evol Syst 42:313–333CrossRefGoogle Scholar
  31. Hampe A, Pemonge MH, Petit RJ (2013) Efficient mitigation of founder effects during the establishment of a leadingedge oak population. Proc R Soc Lond Ser B Biol Sci 280:20131070CrossRefGoogle Scholar
  32. Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335CrossRefGoogle Scholar
  33. Heenan PB, Smissen RD (2013) Revised circumscription of Nothofagus and recognition of the segregate genera Fuscospora, Lophozonia, and Trisyngyne (Nothofagaceae). Phytotaxa 146:1–31CrossRefGoogle Scholar
  34. Heusser CJ (1984) Late-glacial-Holocene climate of Lake District of Chile. Quat Res 22:77–90CrossRefGoogle Scholar
  35. Heusser CJ, Lowell TV, Heusser LE, Hauser A, Björn G (1996) Full-glacial-late-glacial paleoclimate of the Southern Andes: evidence from pollen, beetle and glacial records. J Quat Sci 11:173–184CrossRefGoogle Scholar
  36. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688CrossRefPubMedGoogle Scholar
  37. Hill RS, Jordan GJ, Macphail MK (2015) Why we should retain Nothofagus sensu lato. Aust Syst Bot 28:190–193CrossRefGoogle Scholar
  38. Iglesias V, Whitlock C, Markgraf V, Bianchi MM (2014) Postglacial history of the Patagonian forest/steppe ecotone (41°43′S). Quat Sci Rev 94:120–135CrossRefGoogle Scholar
  39. Jansson R, Dynesius M (2002) The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu Rev Ecol Evol Syst 33:741–777CrossRefGoogle Scholar
  40. Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58CrossRefPubMedGoogle Scholar
  41. Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701CrossRefPubMedGoogle Scholar
  42. Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020CrossRefGoogle Scholar
  43. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), NairobiGoogle Scholar
  44. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefPubMedGoogle Scholar
  45. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449CrossRefPubMedGoogle Scholar
  46. Lexer C, Heinze B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp). For Ecol Manage 197:49–64CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lloyd AH, Bunn AG, Berner L (2011) A latitudinal gradient in tree growth response to climate warming in the Siberian taiga. Glob Chang Biol 17:1935–1945CrossRefGoogle Scholar
  48. Magri D et al (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221CrossRefPubMedGoogle Scholar
  49. Marchelli P, Baier C, Mengel C, Ziegenhagen B, Gallo L (2010) Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conservation Genetics 11:951–963CrossRefGoogle Scholar
  50. Marchelli P, Gallo L (2006) Multiple ice-age refugia in a southern beech from southern South America as revealed by chloroplast DNA markers. Conserv Genet 7:591–603CrossRefGoogle Scholar
  51. Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers revealed a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646CrossRefGoogle Scholar
  52. Marchelli P, Gallo LA (2004) The role of glaciation, fragmentation and hybridization in shaping the distribution of the genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460CrossRefGoogle Scholar
  53. Marchelli P, Smouse P, Gallo L (2012) Short-distance pollen dispersal for an outcrossed, wind-pollinated southern beech (Nothofagus nervosa (Phil.) Dim. et Mil.) Tree Genet Genomes 8:1123–1134CrossRefGoogle Scholar
  54. Masiokas MH, Villalba R, Luckman BH, Lascano ME, Delgado S, Stepanek P (2008) 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Glob Planet Chang 60:85–100CrossRefGoogle Scholar
  55. Mathiasen P, Premoli AC (2010) Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol Ecol 19:371–385CrossRefPubMedGoogle Scholar
  56. Moreno P (1997) Vegetation and climate near Lago llanquihue in the Chilean Lake district between 20200 and 9500 14 C yr BP. J Quat Sci 12:485–500CrossRefGoogle Scholar
  57. Moreno PI, Lowell TV, Jacobson GL Jr, Denton GH (1999) Abrupt vegetation and climate changes during the Last Glacial Maximum and last termination in the Chilean Lake District: a case study from Canal De La Puntilla (41°S). Geogr Ann Ser A, Phys Geogr 81:285–311CrossRefGoogle Scholar
  58. Oliver T et al (2012) Population density but not stability can be predicted from species distribution models. J Appl Ecol 49:581–590CrossRefGoogle Scholar
  59. Pacifici M et al (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224CrossRefGoogle Scholar
  60. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669CrossRefGoogle Scholar
  61. Petit JR, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  62. Petit JR, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footsprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A 94:9996–10001CrossRefPubMedPubMedCentralGoogle Scholar
  63. Petit RJ et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  64. Petit RJ, Hu FS, Dick CW (2008) Forests of the past: a window to future changes. Science 320:1450–1452CrossRefPubMedGoogle Scholar
  65. Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity—I. Haploid locus. Theor Appl Genet 90:462–470CrossRefPubMedGoogle Scholar
  66. Quattrocchio ME, Volkheimer W, Borrromei ANAM, MartÍNez MA (2011) Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review. Biol J Linn Soc 103:380–396CrossRefGoogle Scholar
  67. Ramirez-Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the Delta method. Decision and policy analysis working paper no. 1. In: (CIAT). CIdAT (ed)Google Scholar
  68. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  69. Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–252CrossRefPubMedGoogle Scholar
  70. Rieseberg LH et al (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216CrossRefPubMedGoogle Scholar
  71. Rusch V, Vila A and Marqués B (2008) Conservación de la biodiversidad en sistemas productivos. Forestaciones del Noroeste de la Patagonia. Ed. INTA, Bariloche, Argentina 89ppGoogle Scholar
  72. Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. Am Meteorol Soc 17:4099–4107Google Scholar
  73. Sabatier Y et al (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Boletin Sociedad Argentina Botanica 46:131–138Google Scholar
  74. Seo C, Thorne J, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43CrossRefPubMedGoogle Scholar
  75. Sérsic AN et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494CrossRefGoogle Scholar
  76. Sola G, Attis Beltran H, Chauchard L, Gallo LA (2015) Efecto del manejo silvicultural sobre la regeneración de un bosque de Nothofagus dombeyi. N alpina y N obliqua en la Reserva Nacional Lanín (Argentina) Bosque 36:113–120Google Scholar
  77. Sola G, El Mujtar V, Tsuda Y, Vendramin GG, Gallo L (2016) The effect of silvicultural management on the genetic diversity of a mixed Nothofagus forest in Lanín Natural Reserve, Argentina. For Ecol Manage 363:11–20CrossRefGoogle Scholar
  78. Soliani C, Gallo LA, Marchelli P (2012) Phylogeography of two hybridizing southern beeches (Nothofagus spp.) with different adaptive abilities. Tree Genet Genomes 8:659–673CrossRefGoogle Scholar
  79. Soliani C, Tsuda Y, Bagnoli F, Gallo L, Vendramin GG, Marchelli P (2015) Halfway encounters: meeting points of colonization routes among the southern beeches Nothofagus pumilio and N. antarctica. Mol Phylogenet Evol 85:197–207CrossRefPubMedGoogle Scholar
  80. Souto CP, Mathiasen P, Acosta MC, Quiroga MP, Vidal-Russell R, Echeverria C, Premoli AC (2015) Identifying genetic hotspots by mapping molecular diversity of widespread trees: when commonness matters. J Hered 106:537–545CrossRefPubMedGoogle Scholar
  81. Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034CrossRefGoogle Scholar
  82. Thomas E et al (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75CrossRefGoogle Scholar
  83. Thomas E, van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, van Etten J (2012) Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. PLoS One 7:e47676CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thomas, E., Alcázar Caicedo, C., McMichael, C.H., Corvera, R. , & Loo, J. (2015). Uncovering spatial patterns in the natural and human history of Brazil nut ( Bertholletia excelsa ) across the Amazon Basin. Journal of Biogeography, 42, 1367–1382Google Scholar
  85. Thomas, E., Gil Tobón, C., Gutierrez, J.P., Alcazar Caicedo, C., Moscoso Higuita, L.G., Becerra, L.A., Loo, J., Gonzales, M.A. (2017) Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodiversity & Conservation 26, 825–842Google Scholar
  86. Van Zonneveld M, Dawson L, Thomas E, Scheldeman X, Van Etten J, Loo J, Hormaza JI (2014) Application of molecular markers in spatial analysis to optimize in situ conservation of plant genetic resources. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer Science+Business Media, Dordrecht, pp 67–91CrossRefGoogle Scholar
  87. Van Zonneveld M, Jarvis A, Dvorak WS, Lema G, Leibing C (2009) Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and Central America. For Ecol Manag 257:1566–1576CrossRefGoogle Scholar
  88. van Zonneveld M et al (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS One 7:e29845CrossRefPubMedPubMedCentralGoogle Scholar
  89. Varela S, Gyenge JE, Fernandez ME (2010) Seedling drought stress susceptibility in two deciduous Nothofagus species of NW Patagonia. Trees 24:443–453CrossRefGoogle Scholar
  90. Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, A.S., Perkins, S.L., & Guralnick, R.P. (2007). Locating Pleistoce refugia: comparing phylogeographic and ecological niche models predictions. PLoS One, 2(7), e563Google Scholar
  91. Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6:e325CrossRefPubMedCentralGoogle Scholar
  92. Worth JRP, Harrison PA, Williamson GJ, Jordan GJ (2014) Whole range and regional-based ecological niche models predict differing exposure to 21st century climate change in the key cool temperate rainforest tree southern beech (Nothofagus cunninghamii). Austral Ecol 40:126–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Genética Ecológica y Mejoramiento ForestalINTA EEA BarilocheSan Carlos de BarilocheArgentina
  2. 2.CONICETBuenos AiresArgentina
  3. 3.Bioversity InternationalLimaPerú
  4. 4.Bioversity International, Costa Rica OfficeTurrialbaCosta Rica

Personalised recommendations