Tree Genetics & Genomes

, 13:90 | Cite as

DNA taxonomy in the timber genus Milicia: evidence of unidirectional introgression in the West African contact zone

  • Kasso Daïnou
  • Jean-François Flot
  • Bernd Degen
  • Céline Blanc-Jolivet
  • Jean-Louis Doucet
  • Ludivine Lassois
  • Olivier J. Hardy
Original Article
Part of the following topical collections:
  1. Taxonomy

Abstract

DNA-based techniques are helpful in characterising hybridisation patterns in plant species. To be efficient in disentangling species boundaries and interspecific gene flow, it is recommended to combine various methodologies and types of markers. Here, we used different analytical tools (algorithms implemented in Structure, Tess, NewHybrids and HIest, and the haploweb approach) and three nuclear genetic markers (7 nuclear simple sequence repeat loci (SSRs), 62 single-nucleotide polymorphism loci (SNPs) and a single-copy gene region, At103) to revisit hybridisation patterns in the commercially important African tree genus Milicia. Samples were collected in the natural ranges of Milicia regia and Milicia excelsa in West Africa. Using real data sets, simulated purebreds and hybrid genotypes, we found that SNPs yielded results more consistent than SSRs; outputs from the Bayesian and maximum-likelihood analyses differed significantly using the SSRs, whereas they were perfectly congruent using SNPs. A proportion of 12.4% hybrids were detected amongst the SNP genotype samples. A haploweb analysis of At103 gene sequences confirmed the existence of interspecific hybrids. There was also a clear evidence of advanced generations of hybrids (backcrossed individuals) but only towards M. regia. Although more investigation is required for understanding the mechanisms responsible for this asymmetric introgression, we suggest that it may be due to the differences in flowering time between species and between sexes, combined with a maternal inheritance of flowering time.

Keywords

Hybridisation Introgression Haploweb Tropical forests Milicia sp. 

Notes

Acknowledgments

The development of the SNP markers was carried out with the financial support of the International Tropical Timber Organization (ITTO) through the project PD 620/11 Rev.1 (M): “Development and implementation of species identification and timber tracking in Africa with DNA fingerprints and stable isotopes”. SNP genotyping was performed at the Genomic and Sequencing Facility of Bordeaux (grants from the Conseil Regional d’Aquitaine No. 20030304002FA and 20040305003FA, the European Union, FEDER No. 2003227 and “Investissements d’avenir, Convention attributive d’aide” No. ANR-10-EQPX-16-01). SSR genotyping and DNA sequencing were funded by the Belgian Fund for Scientific Research (F.R.S-FNRS, grant T0163.13). We would like also to thank the Associate Editor Felix Gugerli, two anonymous reviewers and Armel S. L. Donkpegan for their comments, corrections and suggestions that highly contributed in improving the manuscript.

Data archiving statement

The phased Milicia sequences of the nuclear gene At103 were deposited in GenBank under the accession numbers MF541241-MF541316. The At103 chromatograms of the length-variant heterozygotes were deposited in Dryad together with the nuclear SSR and SNP data at http://dx.doi.org/10.5061/dryad.m457d.

Supplementary material

11295_2017_1174_MOESM1_ESM.docx (157 kb)
ESM 1(DOCX 157 kb)

References

  1. Addo-Fordjour P, Obeng S, Anning A, Addo M (2009) Floristic composition, structure and natural regeneration in a moist semi-deciduous forest following anthropogenic disturbances and plant invasion. Int J Biodivers Conserv 1:021–037Google Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedPubMedCentralGoogle Scholar
  3. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  4. Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E (2007) Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv Genet 8:343–354CrossRefGoogle Scholar
  5. Blanc-Jolivet C, Kersten B, Daïnou K, Hardy OJ, Guichoux E, Delcamp A, Degen B (2017) Development of nuclear SNP markers for genetic tracking of Iroko, Milicia excelsa and Milicia regia. Conserv Genet Resour. doi:10.1007/s12686-017-0716-2
  6. Carney SE, Cruzan MB, Arnold ML (1994) Reproductive interactions between hybridizing irises: analyses of pollen-tube growth and fertilization success. Am J Bot 81:1169–1175CrossRefGoogle Scholar
  7. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756CrossRefGoogle Scholar
  8. Chevalier A (1912) Novitates florae africanae—Urticaceae. B Soc Bot Fr 58:207–211Google Scholar
  9. Chevalier A (1917) Les végétaux utiles d’Afrique tropicale française—La forêt et les bois du Gabon. Challamel, ParisGoogle Scholar
  10. Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798CrossRefPubMedGoogle Scholar
  11. Daïnou K, Bizoux JP, Doucet JL, Mahy G, Hardy OJ, Heuertz M (2010) Forest refugia revisited: nSSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moraceae). Mol Ecol 19:4462–4477CrossRefPubMedGoogle Scholar
  12. Daïnou K, Laurenty E, Mahy G, Hardy OJ, Brostaux Y, Tagg N, Doucet JL (2012) Phenological patterns in a natural population of a tropical timber tree species, Milicia excelsa (Moraceae): evidence of isolation by time and its interaction with feeding strategies of dispersers. Am J Bot 99:1453–1463CrossRefPubMedGoogle Scholar
  13. Daïnou K, Mahy G, Duminil J, Dick CW, Doucet J-L, Donkpégan ASL, Pluijgers M, Sinsin B, Lejeune P, Hardy OJ (2014) Speciation slowing down in widespread and long-living tree taxa: insights from the tropical timber tree genus Milicia (Moraceae). Heredity 113:74–85CrossRefPubMedPubMedCentralGoogle Scholar
  14. Daïnou K, Blanc-Jolivet C, Degen B, Kimani P, Ndiade Bourobou D, Donkpégan ASL, Tosso F, Kaymak E, Bourland N, Doucet J-L, Hardy OJ (2016) Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences—a case study in the tree genus Milicia. BMC Evol Biol 16:259CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeFaveri J, Viitaniemi H, Leder E, Merilä J (2013) Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. Mol Ecol Resour 13:377–392CrossRefPubMedGoogle Scholar
  16. Doyle JJ (1995) The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot 20:574–588CrossRefGoogle Scholar
  17. Edwards CE, Soltis DE, Soltis PS (2008) Using patterns of genetic structure based on microsatellite loci to test hypotheses of current hybridization, ancient hybridization and incomplete lineage sorting in Conradina (Lamiaceae). Mol Ecol 17:5157–5174CrossRefPubMedGoogle Scholar
  18. Fehrer J, Gemeinholzer B, Chrtek J Jr, Brautigam S (2007) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylogenet Evol 42:347–361CrossRefPubMedGoogle Scholar
  19. Fitzpatrick BM (2012) Estimating ancestry and heterozygosity of hybrids using molecular markers. BMC Evol Biol 12:131CrossRefPubMedPubMedCentralGoogle Scholar
  20. Flot J-F (2007) Champuru 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977CrossRefGoogle Scholar
  21. Flot J-F (2010) SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Mol Ecol Resour 10:162–166CrossRefPubMedGoogle Scholar
  22. Flot JF, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630CrossRefGoogle Scholar
  23. Flot JF, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fogelqvist J, Verkhozina AV, Katyshev AI, Pucholt P, Dixelius C, Rönnberg-Wästljung AC, Lascoux M, Berlin S (2015) Genetic and morphological evidence for introgression between three species of willows. BMC Evol Biol 15:1CrossRefGoogle Scholar
  25. Freeland JR, Kirk H, Petersen SD (2011) Molecular ecology. Wiley, OxfordCrossRefGoogle Scholar
  26. Galloway LF, Etterson JR, McGlothlin JW (2009) Contribution of direct and maternal genetic effects to life-history evolution. New Phytol 183:826–838CrossRefPubMedGoogle Scholar
  27. Gompert Z, Buerkle CA (2016) What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow. Evol Appl 9:909–923CrossRefPubMedPubMedCentralGoogle Scholar
  28. Granevitze Z, David L, Twito T, Weigend S, Feldman M, Hillel J (2014) Phylogenetic resolution power of microsatellites and various single-nucleotide polymorphism types assessed in 10 divergent chicken populations. Anim Genet 45:87–95CrossRefPubMedGoogle Scholar
  29. Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  30. Hawthorne WD (1995) Ecological profile of Ghanaian forest trees. Oxford Forestry Institute, OxfordGoogle Scholar
  31. Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165:411–423CrossRefPubMedGoogle Scholar
  32. Jakobsson M, Rosenberg NA (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  33. Joker D (2002) Milicia excelsa seed leaflet 63. Available at http://curis.ku.dk/ws/files/20648316/milicia_excelsa_63_int_001.pdf
  34. Lamer JT, Ruebush BC, Arbieva ZH, McClelland MA, Epifanio JM, Sass GG (2015) Diagnostic SNPs reveal widespread introgressive hybridization between introduced bighead and silver carp in the Mississippi river basin. Mol Ecol 24:3931–3943CrossRefPubMedGoogle Scholar
  35. Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242CrossRefPubMedGoogle Scholar
  36. Lepais O, Roussel G, Hubert F, Kremer A, Gerber S (2013) Strength and variability of postmating reproductive isolating barriers between four European white oak species. Tree Genet Genomes 9:841–853CrossRefGoogle Scholar
  37. Levin DA, Francisco-Ortega J, Jansen RK (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16CrossRefGoogle Scholar
  38. Ley AC, Hardy OJ (2017) Hybridization and asymmetric introgression after secondary contact in two tropical African climber species, Haumania danckelmaniana and Haumania liebrechtsiana (Marantaceae). Int J Plant Sci 178:421–430CrossRefGoogle Scholar
  39. Li M, Wunder J, Bissoli G, Scarponi E, Gazzani S, Barbaro E, Saedler H, Varotto C (2008) Development of COS genes as universally amplifiable markers for phylogenetic reconstructions of closely related plant species. Cladistics 24:727–745CrossRefGoogle Scholar
  40. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237CrossRefPubMedGoogle Scholar
  41. Marsden CD et al (2011) Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. Mol Ecol 20:4983–4994CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nichols JD, Agurgo FB, Agyeman VK, Wagner MR, Cobbinah JR (1998) Distribution and abundance of Milicia species in Ghana. Ghana J Forest 6:1–7Google Scholar
  43. Nielsen EE, Bach LA, Kotlicki P (2006) hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973CrossRefGoogle Scholar
  44. Njokuocha RC (2006) Airborne pollen grains in Nsukka. Nigeria Grana 45:73–80CrossRefGoogle Scholar
  45. Nyong’o RN, Cobbinah JR, Appiah-Kwarteng J (1994) Flowering and fruiting patterns in Milicia excelsa and Milicia regia Welw. Ghana J Forest 1:19–29Google Scholar
  46. Oduro K, Duah-Gyamfi A, Acquah S, Agyeman V (2012) Ghana forest and wildlife handbook. Forestry Commission, AccraGoogle Scholar
  47. Ofori DA, Cobbinah JR (2007) Integrated approach for conservation and management of genetic resources of Milicia species in West Africa. Forest Ecol Manag 238:1–6CrossRefGoogle Scholar
  48. Ofori DA, Swaine M, Leifert C, Cobbinah JR, Price AH (2001) Population genetic structure of Milicia excelsa characterized by using RAPD and nucleotide sequencing. Genet Resour Crop Ev 48:637–647CrossRefGoogle Scholar
  49. Olrik DC, Kjaer ED (2007) The reproductive success of a Quercus petraea × Q. robur F1-hybrid in back-crossing situations. Ann For Sci 64:37–45CrossRefGoogle Scholar
  50. Ouinsavi C, Sokpon N, Bousquet J, Newton CH, Khasa DP (2006) Novel microsatellite DNA markers for the threatened African endemic tree species, Milicia excelsa (Moraceae), and cross-species amplification in Milicia regia. Mol Ecol Notes 6:480–483CrossRefGoogle Scholar
  51. Papakostas S, Michaloudi E, Proios K, Brehm M, Verhage L, Rota J, Peña C, Stamou G, Pritchard VL, Fontaneto D, Declerck SAJ (2016) Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst Biol 65:508–524CrossRefPubMedGoogle Scholar
  52. Pappoe A, Armah F, Quaye E, Kwakye P, Buxton G (2010) Composition and stand structure of a tropical moist semi-deciduous forest in Ghana. Int Res J Plant Sci 1:95–106Google Scholar
  53. Pollegioni P, Olimpieri I, Woeste KE, Simoni G, Gras M, Malvolti ME (2012) Barriers to interspecific hybridization between Juglans nigra L. and J. regia L species. Tree Genet Genomes 9:291–305CrossRefGoogle Scholar
  54. Poorter L, Bongers F, Kouamé FN, Hawthorne WD (2004) Biodiversity of West African forests. CABI Publishing, CambridgeGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  56. Quintela M, Thulin C-G, Höglund J (2010) Detecting hybridization between willow grouse (Lagopus lagopus) and rock ptarmigan (L. muta) in central Sweden through Bayesian admixture analyses and mtDNA screening. Conserv Genet 11:557–569CrossRefGoogle Scholar
  57. Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109Google Scholar
  58. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst:83–109Google Scholar
  59. Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624CrossRefGoogle Scholar
  60. Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235CrossRefGoogle Scholar
  61. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  62. Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol S 35:199–227CrossRefGoogle Scholar
  63. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tondeur G (1939) Monographie forestière du Chlorophora excelsa Benth. et Hook. Bulletin Agricole du Congo Belge 30:163–198Google Scholar
  65. Twyford AD, Ennos RA (2012) Next-generation hybridization and introgression. Heredity 108:179–189CrossRefPubMedGoogle Scholar
  66. Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72CrossRefPubMedGoogle Scholar
  67. von Holdt BM, Pollinger JP, Earl DA, Parker HG, Ostrander EA, Wayne RK (2013) Identification of recent hybridization between gray wolves and domesticated dogs by SNP genotyping. Mamm Genome 24:80–88CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Nature+ asbl / TERRA Research Centre, Central African Forests, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium
  2. 2.Université Nationale d’AgricultureKétouBenin
  3. 3.Evolutionary Biology and Ecology – CP 160/12, Faculté des SciencesUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Thünen Institute of Forest GeneticsGrosshansdorfGermany
  5. 5.TERRA Research Centre, Central African Forests, Gembloux Agro-Bio TechUniversity of LiegeGemblouxBelgium

Personalised recommendations