Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genome-wide identification, characterization, and expression analysis of SnRK2 family in Hevea brasiliensis

  • 272 Accesses

  • 2 Citations


The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family belongs to a group of plant-specific serine/threonine kinase family involved in abscisic acid (ABA) signaling and biotic and abiotic stress response. Although genome-wide analyses of the SnRK2 gene family have been conducted in some species, little is known about the SnRK2 gene family in rubber tree (Hevea brasiliensis). In this study, we identified 10 SnRK2s designated as HbSnRK2.1 to HbSnRK2.10 in the rubber tree genome. The subsequently constructed phylogenetic tree demonstrated that HbSnRK2s have three subfamilies that correlate well with those of Arabidopsis sp. and rice subfamilies. All SnRK2 genes contained nine exons and eight introns. Although the C-terminus was divergent, eight conserved motifs were found. Motifs 1–6 were common to all HbSnRK2s. Expression analysis results showed that 7 of the 10 HbSnRK2s were highly expressed in latex. HbSnRK2.7 was predominantly expressed and simultaneously regulated by abscisic acid, jasmonic acid, and ethylene treatment in laticifers. HbSnRK identification and characterization provided further understanding on the role of ABA signal in the rubber tree.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813. doi:10.3389/fpls.2016.00813

  2. Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li Z, Kinoshita T, Ecker JR, Schroeder JI (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci Rep 6:28941. doi:10.1038/srep28941

  3. Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:W39–W49. doi:10.1093/nar/gkv416

  4. Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H, Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141:1316–1327. doi:10.1104/pp.106.079327

  5. Boneh U, Biton I, Schwartz A, Ben-Ari G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:9–96. doi:10.1016/j.plantsci.2012.01.015

  6. Boudsocq M, Barbier-Brygoo H, Lauriere C (2004) Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 279:41758–41766. doi:10.1074/jbc.M405259200

  7. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K, Yeang HY (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440. doi:10.1093/jxb/erm093

  8. Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893. doi:10.1093/jxb/erq331

  9. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. doi:10.1146/annurev-arplant-042809-112122

  10. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book / Am Soc Plant Biol 11:e0166. doi:10.1199/tab.0166

  11. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl):S15–S45. doi:10.1105/tpc.010441

  12. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. doi:10.1146/annurev.arplant.59.032607.092740

  13. Fricke J, Hillebrand A, Twyman RM, Prüfer D, Schulze GC (2013) Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1. Plant Cell Physiol 54:448–464. doi:10.1093/pcp/pcs182

  14. Fujii H, Zhu JK (2009) Arabidopsis mutant deficient in 3 abscisic acid activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci U S A 106:8380–8385. doi:10.1073/pnas.0903144106

  15. Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132. doi:10.1093/pcp/pcp147

  16. Guo D, Li HL, Tang X, Peng SQ (2014) Molecular and functional characterization of the HbSRPP promoter in response to hormones and abiotic stresses. Transgenic Res 23:331–340. doi:10.1007/s11248-013-9753-0

  17. Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol 37:735–748

  18. Hao BZ, Wu JL (2000) Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot 85:37–43

  19. Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680. doi:10.1104/pp.102.011999

  20. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. doi:10.1093/bioinformatics/btu817

  21. Huai J, Wang M, He J, Zheng J, Dong Z, Lv H, Zhao J, Wang G (2008) Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep 27:1861–1868. doi:10.1007/s00299-008-0608-8

  22. Huang Z, Tang J, Duan W, Wang Z, Song X, Hou X (2015) Molecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis). Front. Plant Sci 6:879. doi:10.3389/fpls.2015.00879

  23. Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177. doi:10.1105/tpc.019943

  24. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949. doi:10.1111/j.1365-313X.2005.02583.x

  25. Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872. doi:10.1089/omi.2011.0091

  26. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci U S A 108:5891–5896. doi:10.1073/pnas.1103010108

  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

  28. Lee SC, Luan S (2012) ABA signal transduction at the cross road of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi:10.1111/j.1365-3040.2011.02426.x

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

  30. Lopez-Molina L, Mongrand S, Chua NH (2001) A post germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 98:4782–4787. doi:10.1073/pnas.081594298

  31. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068. doi:10.1126/science.1172408

  32. Miyakawa T, Fujita Y, Yamaguchi-Shinozaki K, Tanokura M (2013) Structure and function of abscisic acid receptors. Trends Plant Sci 18:259–266. doi:10.1016/j.tplants.2012.11.002

  33. Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363. doi:10.1093/pcp/pcp083

  34. Oh SK, Kang H, Shin DH, Yang J, Chow KS, Yeang HY, Wagner B, Breiteneder H, Han KH (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274:17132–17138. doi:10.1074/jbc.274.24.17132

  35. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. doi:10.1126/science.1173041

  36. Peng SQ, Xu J, Li HL, Tian WM (2009) Cloning and molecular characterization of HbCOI1 from Hevea brasiliensis. Biosci Biotechnol Biochem 73:665–670. doi:10.1271/bbb.80721

  37. Pirrello J, Leclercq J, Dessailly F, Rio M, Piyatrakul P, Kuswanhadi K, Tang C, Montoro P (2014) Transcriptional and post-transcriptional regulation of the jasmonate signaling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC Plant Biol 14:341. doi:10.1186/s12870-014-0341-0

  38. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401. doi:10.1016/j.tplants.2010.04.006

  39. Rahman AYA, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y et al (2013) Draft genome sequence of the rubber tree (Hevea brasiliensis). BMC Genomics 14:75. doi:10.1186/1471-2164-14-75

  40. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324. doi:10.1093/nar/gku316

  41. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571. doi:10.3389/fpls.2016.00571

  42. Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B (2014) Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem 49:59–70. doi:10.1016/j.compbiolchem. 2013.09.005

  43. Shao Y, Qin Y, Zou Y, Ma F (2014) Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia. Gene 552:87–97. doi:10.1016/j.gene.2014.09.017

  44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

  45. Tang C, Qi J, Li H, Zhang C, Wang Y (2007) A convenient and efficient protocol for isolating high quality RNA from latex of Hevea brasiliensis (para rubber tree). J Biochem Biophys Methods 70:749–754. doi:10.1016/j.jbbm.2007.04.002

  46. Tang C, Yang M, Fang Y, Luo Y, Gao S, Xiao X et al (2016) The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 16073. doi:10.1038/NPLANTS.2016.73

  47. Tian WW, Huang WF, Zhao Y (2010) Cloning and characterization of HbJAZ1 from the laticifer cells in rubber tree (Hevea brasiliensis Muell. Arg.) Trees 24:771–779. doi:10.1016/j.plaphy.2015.10.023

  48. Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856. doi:10.1104/pp.109.140228

  49. Tungngoen K, Viboonjun U, Kongsawadworakul P, Katsuhara M, Julien JL, Sakr S, Chrestin H, Narangajavana J (2011) Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. J Plant Physiol 168:253–262

  50. Vilela B, Pagès M, Riera M (2015) Emerging roles of protein kinase CK2 in abscisic acid signaling. Front Plant Sci 6:966. doi:10.3389/fpls.2015.00966

  51. Wang L, Hu W, Sun J, Liang X, Yang X, Wei S, Wang X, Zhou Y, Xiao Q, Yang G, He G (2015) Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci 237:33–45. doi:10.1016/j.plantsci.2015.05.008

  52. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 2:198–217. doi:10.1093/mp/ssm022

  53. Yoo MJ, Ma T, Zhu N, Liu L, Harmon AC, Wang Q, Chen S (2016) Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells. Plant Mol Biol 91:211–227. doi:10.1007/s11103-016-0456-9

  54. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318. doi:10.1074/jbc.M509820200

  55. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139. doi:10.1016/j.pbi.2014.07.009

  56. Zhang XL, Jiang L, Xin Q, Liu Y, Tan JX, Chen ZZ (2015) Structural basis and functions of abscisic acid receptors PYLs. Front Plant Sci 6:88. doi:10.3389/fpls.2015.00088

  57. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant.53.091401.143329

  58. Zhu J, Zhang Z (2009) Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signal Behav 4:1072–1074

Download references


This study was supported by National Natural Science Foundation of China (No. 31471169) and Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (No. 1630052016003) and the earmarked fund for China Agriculture Research System (CARS-34-ZP1).

Data archiving statement

Nucleotide sequences were deposited with the GenBank HbSnRK2.1 (GenBank accession no. KY211982), HbSnRK2.2 (GenBank accession no. KY211983), HbSnRK2.3 (GenBank accession no. KY211984), HbSnRK2.4 (GenBank accession no. KY211985), HbSnRK2.5 (GenBank accession no. KY211986), HbSnRK2.6 (GenBank accession no. KY211987), HbSnRK2.7 (GenBank accession no. KY211988), HbSnRK2.8 (GenBank accession no. KY211989), HbSnRK2.9 (GenBank accession no. KY2119990), and HbSnRK2.10 (GenBank accession no. KY211991).

Author information

Shi-Qing Peng and Dong Guo conceived and designed the experiments and drafted the manuscript; Dong Guo, Hui-Liang Li, Jia-Hong, Zhu Ying Wang, An Feng, and Gui-Shui Xie carried out the gene isolation, sequence analysis, and gene expression analysis. All authors read and approved the manuscript.

Correspondence to Shi-Qing Peng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by W. Ratnam

Electronic supplementary material

Table S1

(DOCX 14 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, D., Li, H., Zhu, J. et al. Genome-wide identification, characterization, and expression analysis of SnRK2 family in Hevea brasiliensis . Tree Genetics & Genomes 13, 86 (2017). https://doi.org/10.1007/s11295-017-1168-2

Download citation


  • Hevea brasiliensis
  • SnRK2 family
  • Abscisic acid