Advertisement

Tree Genetics & Genomes

, 13:73 | Cite as

Genetic divergence within the monotypic tree genus Platycarya (Juglandaceae) and its implications for species’ past dynamics in subtropical China

  • Qiuchi Wan
  • Zhuo Zheng
  • Kangyou Huang
  • Erwan Guichoux
  • Rémy J. Petit
Original Article
Part of the following topical collections:
  1. Taxonomy

Abstract

Subtropical East Asia harbours a large plant diversity that is often attributed to allopatric speciation in this topographically complex region characterized by a relative climate stability. Here, we use observations of Platycarya, a widespread subtropical Asian tree genus, to explore the consequences of past climate stability on species’ evolutionary history in subtropical China. This genus has a controversial taxonomy: while it is now prevailingly treated as monotypic, two species have been originally described, Platycarya strobilacea and P. longipes. Previous information from species distribution models, fossil pollen data and genetic data based on chloroplast DNA (cpDNA) were integrated with newly obtained genetic data from the two putative species. We used both cpDNA (psbA-trnH and trnL-F intergenic spacers, including a partial trnL gene sequence) and nuclear markers. The latter included sequences of the internal transcribed spacer region (ITS1–5.8S–ITS2) of the nuclear ribosomal DNA and random genomic single nucleotide polymorphisms. Using these nuclear genetic markers, we found interspecific genetic divergence fitting with the ‘two species’ scenario and geographically structured intraspecific variation. Using cpDNA markers, we also found geographically structured intraspecific variation. Despite deep inter- and intraspecific genetic divergence, we detected genetic admixture in southwest China. Overall, our findings of genetic divergence within Platycarya support the hypothesis of allopatric speciation. However, episodes of population interconnection were identified, at least in southwest China, suggesting that the genus has had a dynamic population history.

Keywords

Allopatric speciation Last Glacial Maximum Plant diversity Platycarya Quaternary Subtropical China 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 41230101), by the 7th Framework Program of the EC under the Trees4Future project (Trees4Future, 284181) and by the China Scholarship Council. The experiments dealing with the identification and genotyping of SNPs were performed at the Genome Transcriptome Facility of Bordeaux (grants from the Conseil Regional d’Aquitaine no. 20030304002FA and 20040305003FA and from the European Union, FEDER no. 2003227 and from Investissements d’avenir, Convention attributive d’aide EquipEx Xyloforest ANR-10-EQPX-16-01 and LabEx COTE ANR-10-LABX-45). The authors would like to thank Zhong Z. Zhou, Qiang Fan, Christophe Boury, Patrick Leger, Adline Delcamp and Mei L. Man for their help with the experiments. We also thank Zhe M. Hu, Yuan Z. Wu, Alexis Ducousso and members of the palynology team in Sun Yat-sen University for collecting the leaf samples. Thanks are also given to Olivier Lepais for guidance with the exploration of ddRAD sequence data and to the reviewers as well as to the associate editor for their constructive comments on earlier versions of this manuscript.

Data archiving statement

All data will be deposited in NCBI upon acceptance of this ms.

Supplementary material

11295_2017_1153_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1610 kb)

References

  1. Atkinson PJ, Upson T (2006) Platycarya strobilacea. Curtis’s Bot Mag 23:77–83CrossRefGoogle Scholar
  2. Bai WN, Wang WT, Zhang DY (2014) Contrasts between the phylogeographic patterns of chloroplast and nuclear DNA highlight a role for pollen-mediated gene flow in preventing population divergence in an East Asian temperate tree. Mol Phylogenet Evol 81:37–48CrossRefPubMedGoogle Scholar
  3. Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopold 92:61–83Google Scholar
  4. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256CrossRefGoogle Scholar
  5. Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX (2016) Evolution of East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol Biol 16:66CrossRefPubMedPubMedCentralGoogle Scholar
  6. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen S-C, Zhang L, Zeng J, Shi F, Yang H, Mao Y-R, Fu C-X (2012) Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae). J Syst Evol 50:374–385CrossRefGoogle Scholar
  8. China Plant B O L Group, Li D-Z, Gao L-M, Li H-T, Wang H, Ge X-J, Liu J-Q, Chen Z-D, Zhou S-L, Chen S-L, Yang J-B, Fu C-X, Zeng C-X, Yan H-F, Zhu Y-J, Sun Y-S, Chen S-Y, Zhao L, Wang K, Yang T, Duan G-W (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 108:19641–19646CrossRefGoogle Scholar
  9. Clement M, Posada D, Crandall KA (2000) TCS a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  10. Comes HP, Abbott RJ (2001) Molecular phylogeography, reticulation, and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution 55:1943–1962CrossRefPubMedGoogle Scholar
  11. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull 19:11–15. doi: 10.2307/4119796 Google Scholar
  12. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. Available at: http://www.geneious.com
  13. Du FK, Petit RJ, Liu JQ (2009) More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Mol Ecol 18:1396–1407CrossRefPubMedGoogle Scholar
  14. Duminil J, Caron H, Scotti I, Cazal SO, Petit RJ (2006) Blind population genetics survey of tropical rainforest trees. Mol Ecol 15:3505–3513CrossRefPubMedGoogle Scholar
  15. Emerson KJ, Merz CR, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, Holzapfel CM (2010) Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci U S A 107:16196–16200CrossRefPubMedPubMedCentralGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  17. Fang J, Wang Z, Tang Z (2011) Atlas of woody plants in China: distribution and climate. High Education Press, BeijingCrossRefGoogle Scholar
  18. Feng G, Mao L, Sandel B, Swenson NG, Svenning J-C (2016) High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J Biogeogr 43:145–154CrossRefGoogle Scholar
  19. Fukuhara T, Tokumaru S (2014) Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae). Ann Bot 113:467–476CrossRefPubMedGoogle Scholar
  20. Guichoux E, Garnier-Gere P, Lagache L, Lang T, Boury C, Petit RJ (2013) Outlier loci highlight the direction of introgression in oaks. Mol Ecol 22:450–462CrossRefPubMedGoogle Scholar
  21. Harrison RG, Bogdanowicz SM (1997) Patterns of variation and linkage disequilibrium in a field cricket hybrid zone. Evolution 51:493–505CrossRefPubMedGoogle Scholar
  22. Harrison SP, Yu G, Takahara H, Prentice IC (2001) Palaeovegetation-diversity of temperate plants in east Asia. Nature 413:129–130CrossRefPubMedGoogle Scholar
  23. Hartigan JA, Hartigan PM (1985) The dip test of unimodality. Ann Stat 13:70–84CrossRefGoogle Scholar
  24. Kou Y, Cheng S, Tian S, Li B, Fan D, Chen Y, Soltis DE, Soltis PS, Zhang Z (2016) The antiquity of Cyclocarya paliurus (Juglandaceae) provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene. J Biogeogr 43:351–360CrossRefGoogle Scholar
  25. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kuang KZ, Cheng SH, Li PC, Lu AM (1979) Juglandaceae. In: Flora reipublicae popularis sinicae. Science Press, Beijing, pp 8–42Google Scholar
  27. Le Bras Y, Roult A, Monjeaud C, Bahin M, Quenez O, Heriveau C, Bretaudeau A, Sallou O, Collin O (2013) Towards a life sciences virtual research environment: an e-science initiative in western France. Conference: JOBIM, New York CityGoogle Scholar
  28. López-Pujol J, Zhang F-M, Sun H-Q, Ying T-S, Ge S (2011) Centres of plant endemism in China: places for survival or for speciation? J Biogeogr 38:1267–1280CrossRefGoogle Scholar
  29. Li J, Zheng Z, Huang K, Yang S, Chase B, Valsecchi V, Carré M, Cheddadi R (2013) Vegetation changes during the past 40,000 years in central China from a long fossil record. Quat Int 310:221–226CrossRefGoogle Scholar
  30. Li R-Q, Chen Z-D, Lu A-M (2005) Organogenesis of the inflorescence and flowers in Platycarya strobilacea (Juglandaceae). Int J Plant Sci 166:449–457CrossRefGoogle Scholar
  31. Li W-Y, Wu H-F (1978) A palynological investigation on the late Tertiary and early Quaternary and its significance in the paleogeographical study in central Yunnan. Acta Geograph Sin 33:142–155. doi: 10.11821/xb197802005 Google Scholar
  32. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  33. Lu A-M (1982) On the geographical distribution of the Juglandaceae. Acta Phytotaxonomica Sin 20:257–274 (in Chinese)Google Scholar
  34. Lu A-M, Stone D, Grauke L (1999) Juglandaceae. In: Flora of China. Science Press, Beijing, pp 277–285Google Scholar
  35. Luo R-S (2015) Systematics studies on endemic plants of Platycarya (Juglandacea) in eastern Asia. Guangxi Normal University, GuangxiGoogle Scholar
  36. Maechler M (2015) Diptest: Hartigan’s dip test statistic for unimodality corrected. R package version 0.75-7. Available at: https://CRAN.R-project.org/package=diptest
  37. Manchester SR (1999) Biogeographical relationships of North American tertiary floras. Ann Mo Bot Gard:472–522Google Scholar
  38. Manos PS, Stone DE (2001) Evolution, phylogeny, and systematics of the Juglandaceae. Ann Mo Bot Gard 88:231–269CrossRefGoogle Scholar
  39. Manos PS, Soltis PS, Soltis DE, Manchester SR, Oh SH, Bell CD, Dilcher DL, Stone DE (2007) Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Syst Biol 56:412–430CrossRefPubMedGoogle Scholar
  40. McCormack JE, Maley JM, Hird SM, Derryberry EP, Graves GR, Brumfield RT (2012) Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences. Mol Phylogenet Evol 62:397–406CrossRefPubMedGoogle Scholar
  41. Ni J, Harrison SP, Prentice IC, Kutzbach JE, Sitch S (2006) Impact of climate variability on present and Holocene vegetation: a model-based study. Ecol Model 191:469–486CrossRefGoogle Scholar
  42. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  43. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  44. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  45. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  48. Pritchard JK, Wen X, Falush D (2003) Documentation for structure software: version 2.3. J Pediatr Surg 41:55–63Google Scholar
  49. Pukk L, Ahmad F, Hasan S, Kisand V, Gross R, Vasemagi A (2015) Less is more: extreme genome complexity reduction with ddRAD using Ion Torrent semiconductor technology. Mol Ecol Resour 15:1145–1152CrossRefPubMedGoogle Scholar
  50. Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182CrossRefPubMedGoogle Scholar
  51. Qian H, Ricklefs RE (2001) Diversity of temperate plants in East Asia (Qian and Ricklefs reply). Nature 413:130Google Scholar
  52. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world's most diverse temperate flora. Mol Phylogenet Evol 59:225–244CrossRefPubMedGoogle Scholar
  53. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  54. Shen Z, Zhang X (2000) A quantitative analysis on the floristic elements of the Chinese subtropical region and their spatial patterns. Acta Phytotaxonomica Sin 38:366–380 (in Chinese)Google Scholar
  55. Shi M-M, Michalski SG, Welk E, Chen X-Y, Durka W, Carine M (2014) Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J Biogeogr 41:1710–1720CrossRefGoogle Scholar
  56. Sun Y, Moore MJ, Yue L, Feng T, Chu H, Chen S, Ji Y, Wang H, Li J, Carine M (2014) Chloroplast phylogeography of the East Asian Arcto-Tertiary relict Tetracentron sinense (Trochodendraceae). J Biogeogr 41:1721–1732CrossRefGoogle Scholar
  57. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203CrossRefPubMedGoogle Scholar
  58. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  59. Tian S, Lei SQ, Hu W, Deng LL, Li B, Meng QL, Soltis DE, Soltis PS, Fan DM, Zhang ZY (2015) Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Mol Phylogenet Evol 85:238–246CrossRefPubMedGoogle Scholar
  60. Wan Q-C (2016) Phylogeography and population genetics of the East Asia endemic genus Platycarya (Juglandaceae). Ph.D. Thesis. Guangzhou: Sun Yat-sen University (in Chinese with English abstract)Google Scholar
  61. Wang W-M (1996) A palynological survey of Neogene strata in Xiaolongtan basin, Yunnan province of south China. Acta Bot Sin 38:743–748 (in Chinese)Google Scholar
  62. Wang W-M, Chen G-J, Chen Y-F, Kuang G-D Tertiary palynostratigraphy of the Ningming basin, Guangxi. J Stratigr 27:324–327 (in Chinese)Google Scholar
  63. Wang W, Shu J, Deng T (2009) Neogene pollen floras in China with regional orientation and environment response. Acta Palaeontol Sin 48:175–184 (in Chinese)Google Scholar
  64. Wang CB, Wang T, Su YJ (2014) Phylogeography of Cephalotaxus oliveri (Cephalotaxaceae) in relation to habitat heterogeneity, physical barriers and the uplift of the Yungui Plateau. Mol Phylogenet Evol 80:205–216CrossRefPubMedGoogle Scholar
  65. White TJ, Bruns T, Lee S, Taylor J (1990) Amplifications and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols. Academic Press, San Diego, pp 315–322Google Scholar
  66. Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci U S A 88:2540–2544CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wing SL, Hickey LJ (1984) The Platycarya perplex and the evolution of the Juglandaceae. Am J Bot 71:388–411CrossRefGoogle Scholar
  68. Wu CA, Campbell DR (2005) Cytoplasmic and nuclear markers reveal contrasting patterns of spatial genetic structure in a natural Ipomopsis hybrid zone. Mol Ecol 14:781–792CrossRefPubMedGoogle Scholar
  69. Xu J, Deng M, Jiang X-L, Westwood M, Song Y-G, Turkington R (2014) Phylogeography of Quercus glauca (Fagaceae), a dominant tree of east Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genet Genomes 11:805CrossRefGoogle Scholar
  70. Yu G, Chen X, Ni J et al (2000) Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. J Biogeogr 27:635–664CrossRefGoogle Scholar
  71. Zeng YF, Liao WJ, Petit RJ, Zhang DY (2011) Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Mol Ecol 20:4995–5011CrossRefPubMedGoogle Scholar
  72. Zhang Z-H, Hu G, Zhu J-D, Luo D-H, Ni J (2010) Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecol Res 25:1151–1160CrossRefGoogle Scholar
  73. Zhang ZY, Wu R, Wang Q, Zhang ZR, Lopez-Pujol J, Fan DM, Li DZ (2013) Comparative phylogeography of two sympatric beeches in subtropical China: species-specific geographic mosaic of lineages. Ecol Evol 3:4461–4472CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zheng Z (2000) Late Quaternary vegetation and climatic changes in the tropical and subtropical areas of China. Acta Micropalaeontol Sin 17:125–146 (in Chinese)Google Scholar
  75. Zheng Z, Wei J, Huang K, Xu Q, Lu H, Tarasov P, Luo C, Beaudouin C, Deng Y, Pan A, Zheng Y, Luo Y, Nakagawa T, Li C, Yang S, Peng H, Cheddadi R (2014) East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate. J Biogeogr 41:1819–1832CrossRefGoogle Scholar
  76. Zhong GL (2011) Afforestation techniques of indigenous tree species—Platycarya. Garden and Landscaping 1:53–54 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Earth Science and Geological EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.BIOGECO, INRAUniversity of BordeauxCestasFrance

Personalised recommendations