Tree Genetics & Genomes

, 13:24 | Cite as

The colonization history of the Mediterranean dwarf palm (Chamaerops humilis L., Palmae)

  • Beatriz Guzmán
  • José M. Fedriani
  • Miguel Delibes
  • Pablo Vargas
Original Article
Part of the following topical collections:
  1. Population structure


Chamaerops humilis L. (Mediterranean dwarf palm) is an important floristic element of the western Mediterranean region because it is the only palm species naturally distributed in both Europe and Africa. The combination of a time-calibrated phylogeny, a haplotype network and genetic diversity analyses based on plastid sequences, together with previous nuclear DNA fingerprint results, helped reconstruct the colonization history of the dwarf palm. Based on a sample of 218 individuals taken from 29 geographical areas that cover the current distribution of Chamaerops, we detected four plastid DNA (petA-psbJ) haplotypes distributed in two haplotype groups (lineage 1: haplotypes A/B; lineage 2: haplotypes C/D). Haplotypes A, B, and C showed a widespread geographical distribution in both Africa and Europe, whereas haplotype D was restricted to two African localities. Paleobotanical data, species distribution modeling and divergence time estimates suggest that Chamaerops diverged from Trachycarpus in the Miocene (27.05–6.05 Ma), followed by a split of the two C. humilis lineages that remained isolated during the Miocene-Pliocene. Divergence estimates also support a derived split into two haplotypes (A/B) in the Pleistocene, when the Mediterranean Sea barrier was in existence. This, together with geographical distribution of haplotypes A and B, strongly suggests that the disjunct distribution of C. humilis haplotypes in Europe and Africa is the result of long-distance dispersal (LDD) events rather than vicariance. In agreement with recurrent gene flow (events of LDD colonization), AMOVA revealed that most of the genetic variance was found among populations (61.52%). Irrespective of predominant plant translocations by humans or seed dispersal by natural means, our results support that current populations are the result of relatively recent contacts between Africa and Europe in the Quaternary.


Dispersal barrier Haplotype Long-distance dispersal Mediterranean region ptDNA Vicariance 



The authors thank to four anonymous reviewers and W. Baker for suggestions that improved the quality of the manuscript, to J. Mayol for information about historical uses of dwarf palm in Baleares; to M. Ahmim, M. d’Amico, G. Calvo, J. Calzada, M. Clavero, C. Delibes, M. Jácome, A. Longo, I. Mateos, M. Navarro, E. Pérez de Gracia, E. Real, Riserva Naturale Orientata dello Zingaro, O. Rodríguez, A. Segura, J. Serrano, A. Vázquez, P. Vázquez, and Servicio de Protección de Especies de las Islas Baleares for field assistance and collection of plant material; and to E. Cano for lab assistance. This research was supported by the Spanish Ministry of Science and Innovation (CGL2010-21926), the Spanish Ministry of Economy and Competitiveness (CGL2015-67865-P), a FCT Portuguese grant (IF/00728/2013) to JMF, and a Juan de la Cierva fellowship to BG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Data Archiving Statement

We have submitted the petA-psbJ sequences to Genbank. See supplementary Table S2 for accession numbers.

Supplementary material

11295_2017_1108_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)


  1. Abbas B, Renwarin Y, Bintoro MH, Sudarsono H, Surahman M, Ehara H (2010) Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA) markers. Biodiversitas 11:112–111CrossRefGoogle Scholar
  2. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Rev Genet 17:81–92CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anstett MC (1999) An experimental study of the interaction between the dwarf palm (Chamaerops humilis) and its floral visitor Derelomus chamaeropsis throughout the life cycle of the weevil. Acta Oecol 20:551–558CrossRefGoogle Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Baker WJ, Couvreur TLP (2013) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I Historical biogeography J Biogeogr 40:274–285Google Scholar
  6. Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forrest F, Harley MM, Uhl MW, Wilkinson M (2009) Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58:240–256CrossRefPubMedGoogle Scholar
  7. Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Human Ecol 34:713–729CrossRefGoogle Scholar
  8. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, OxfordGoogle Scholar
  9. Burban C, Petit RJ, Carcreff E, Jactel H (1999) Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8:1593–1603CrossRefPubMedGoogle Scholar
  10. Cain SA (1943) Criteria for the indication of center of origin in plant geographical studies. Torreya 43:132–1545Google Scholar
  11. Carrión JS (2012) Paleoflora y paleovegetación de la Península Ibérica e Islas Baleares: Plioceno-Cuaternario. Ministerio de Economía y Competitividad, Madrid, SpainGoogle Scholar
  12. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  13. Cox B, Moore PD, Ladle R (2016) Biogeography: an ecological and evolutionary approach. Wiley Blackwell, OxfordGoogle Scholar
  14. del Cañizo JA (2011) Palmeras. Ediciones Mundi-Prensa (in Spanish), Madrid, SpainGoogle Scholar
  15. Delibes M, Castañeda I, Fedriani JM (2017) Goats spit viable seeds from their cud: an overlooked mechanism of seed dispersal by ruminants. Front Ecol Environm (in press)Google Scholar
  16. do Amaral J (1980) Chamaerops. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Waters SM, Webb DA (eds) Flora Europaea, vol V. Cambridge University Press, Cambridge, p 267Google Scholar
  17. Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008) Genera Palmarum: the evolution and classification of palms. Royal Botanic Gardens, London, UKGoogle Scholar
  18. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dufay M (2010) Impact of plant flowering phenology on the cost/benefit balance in a nursery pollination mutualism, with honest males and cheating females. J Evol Biol 23:977–986CrossRefPubMedGoogle Scholar
  20. Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP (2003) Deep roots on the Messinian salinity crisis. Nature 422:602–606CrossRefPubMedGoogle Scholar
  21. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  22. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  23. Fedriani JM, Delibes M (2011) Dangerous liaisons disperse the Mediterranean dwarf palm: fleshy-pulp defensive role against seed predators. Ecology 92:304–315CrossRefPubMedGoogle Scholar
  24. Fernández-Mazuecos M, Vargas P (2011) Historical isolation versus recent long-distance connections between Europe and Africa in bifid toadflaxes (Linaria sect. Versicolores). PLoS One 6:e22234CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fiz O, Valcárcel V, Vargas P (2002) Phylogenetic position of Mediterranean Astereae and character evolution of daisies (Bellis, Asteraceae) inferred from nrDNA ITS sequences. Mol Phylogenet Evol 25:157–171CrossRefPubMedGoogle Scholar
  26. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Galán A, Castroviejo S (2007) Chamaerops L. In: Castroviejo S, Luceño M, Galán A, Jiménez P, Cabezas F, Medina L (eds) Flora ibérica: plantas vasculares de la Península Ibérica e Islas Baleares, vol XVIII: Cyperaceae-Pontederiaceae. Real Jardín Botánico (CSIC), Madrid, pp 273–275Google Scholar
  28. García-Castaño JL, Terrab A, Ortiz MA, Stuessy TF, Talavera S (2014) Patterns of phylogeography and vicariance of Chamaerops humilis L. (Palmae). Turk J Bot 38:1132–1146CrossRefGoogle Scholar
  29. García-Verdugo C, Forrest AD, Fay MF, Vargas P (2010) The relevance of gene flow in metapopulation dynamics of an oceanic island endemic, Olea europaea subsp. guanchica. Evolution 64:3525–3536CrossRefPubMedGoogle Scholar
  30. Giovino A, Scibetta S, Saia S, Guarino C (2014) Genetic and morphologic diversity of European fan palm (Chamareops humilis L.) populations from different environments from Sicily. Bot J Linn Soc 176:66–81CrossRefGoogle Scholar
  31. Grivet D, Petit RJ (2002) Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Mol Ecol 11:1351–1362CrossRefPubMedGoogle Scholar
  32. Guzmán B, Vargas P (2009) Long-distance colonization of the western Mediterranean by Cistus ladanifer (Cistaceae) despite the absence of special dispersal mechanisms. J Biogeogr 36:954–968CrossRefGoogle Scholar
  33. Hasnaoui O, Bouazza M, Benali O, Thinon M (2011) Ethno botanic study of Chamaerops humilis L. var. argentea Andre (Arecaceae) in Western Algeria. Agric J 6:1–6Google Scholar
  34. Herrera J (1989) On the reproductive biology of the dwarf palm, Chamaerops humilis in southern Spain. Principes 33:27–32Google Scholar
  35. Hilpold A, Schönswetter P, Susanna A, García-Jacas N, Vilatersana R (2011) Evolution of the Central Mediterranean Centaurea cineraria group (Asteraceae): evidence for relatively recent, allopatric diversification following transoceanic seed dispersal. Taxon 60:528–538Google Scholar
  36. Jacob M, Pérez-Jordà G, Peña-Chocarro L, Zapata L, Ruíz-Alonso M, López-Sáez JA, Linstädter J (2013) The origins of agriculture in North-West Africa: macro-botanical remains from Epipalaeolithic and Early Neolithic levels of Ifri Oudadane (Morocco). J Archaeol Sci 40:2659–2669CrossRefGoogle Scholar
  37. Lacroix A (1896) Sur la découverte d’un gisement d’empreintes végétales dans les cendres volcaniques anciennes de l’île de Phira (Santorin). Compt Rend Hebd Séances Acad Sci Serie D 123:656–659Google Scholar
  38. Lo Presti RM, Oberprieler C (2011) The central Mediterranean as a phytodiversity hotchpotch: phylogeographical patterns of the Anthemis secundiramea group (Compositae, Anthemideae) across the Sicilian Channel. J Biogeogr 38:1109–1124CrossRefGoogle Scholar
  39. Mai DH (1989) Development and regional differentiation of the European vegetation during the Tertiary. Plant Syst Evol 162:79–91CrossRefGoogle Scholar
  40. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Missouri Bot Gard 84:112–127CrossRefGoogle Scholar
  41. Merlo ME, Alemán MM, Cabello J, Peñas J (1993) On the Mediterranean fan palm. Principes 37:l5l–158Google Scholar
  42. Miller MA, Pfeiffer W, Schwartz T 2010 Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp 1–8Google Scholar
  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NYGoogle Scholar
  44. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  45. Ortiz MA, Tremetsberger K, Talavera S, Stuessy T, García-Castaño JL (2007) silvasPopulation structure of Hypochaeris salzmanniana DC. (Asteraceae), an endemic species to the Atlantic coast on both sides of the strait of Gibraltar, in relation to Quaternary Sea level changes. Mol Ecol 16:541–552CrossRefPubMedGoogle Scholar
  46. Peterson BJ, Graves WR (2016) Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the last glacial maximum in eastern North America. J Biogeogr 43:314–327CrossRefGoogle Scholar
  47. Petit RJ et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Managem 156:49–74CrossRefGoogle Scholar
  48. Pistone A (1890) Disseminazione zoofila per uccelli fitofagi. Naturalista Sicil 9:229–234Google Scholar
  49. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  50. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  51. Quezel P (1985) Definition of the Mediterranean region and the origin of its flora. In: Gómez-Campo C (ed) Plant conservation in the Mediterranean area. W. Junk Publ, Dordrecht, pp 9–24Google Scholar
  52. Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from
  53. Rodríguez M, Delibes M, Fedriani JM (2014) Hierarchical levels of seed predation variation by introduced beetles on an endemic Mediterranean palm. PLoS One 9:e109867CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rodríguez-Sánchez F, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J (2008) The strait of Gibraltar as a melting pot for plant biodiversity. Quaternary Sci Rev 27:2100–2117CrossRefGoogle Scholar
  55. Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Vargas P (2016) Mediterranean biomes: evolution of their vegetation, floras, and climate. Ann Rev Ecol Evol Syst 47:383–407CrossRefGoogle Scholar
  56. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefPubMedGoogle Scholar
  57. Silva JL, Lim S-Y, Kim S-C, Mejías JA (2015) Phylogeography of cliff-dwelling relicts with a highly narrow and disjunct distribution in the western Mediterranean. Am J Bot 102:1538–1551CrossRefPubMedGoogle Scholar
  58. Soltis DE, Gitzendanner MA, Strenge DD, Soltis PS (1997) Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Syst Evol 206:353–373CrossRefGoogle Scholar
  59. Stillman JH, Armstron E (2017) Genomics are transforming our understanding of responses to climate change. BioScienceGoogle Scholar
  60. Suc JP et al (1995) Structure of West Mediterranean vegetation and climate since 5.3 Ma. Acta Zool Cracrov 38:3–16Google Scholar
  61. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III Cladogram estimation Genetics 132:619–633PubMedGoogle Scholar
  62. Terrab A, Talavera S, Arista M, Paun O, Stuessy TF, Tremetsberger K (2007) Genetic diversity and geographic structure at chloroplast microsatellites (cpSSRs) in endangered West Mediterranean firs (Abies spp., Pinaceae). Taxon 56:409–416Google Scholar
  63. Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  64. Troia A, Raimondo FM, Geraci A (2012) Does genetic population structure of Ambrosina bassii L. (Araceae, Ambrosineae) attest a post-Messinian land-bridge between Sicily and Africa? Flora 207:646–653CrossRefGoogle Scholar
  65. Vargas P, Morton CM, Jury SL (1999) Biogeographic patterns in Mediterranean and Macaronesian species of Saxifraga (Saxifragaceae) inferred from phylogenetic analyses of ITS sequences. Am J Bot 86:724–734CrossRefPubMedGoogle Scholar
  66. Vendramin GG et al (2008) Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62:680–688CrossRefPubMedGoogle Scholar
  67. Wang CB, Smith TB (2002) Closing the seed dispersal loop. Trends Ecol Evol 17:379–385CrossRefGoogle Scholar
  68. Woodward JC (2009) The physical geography of the Mediterranean. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Beatriz Guzmán
    • 1
  • José M. Fedriani
    • 2
    • 3
  • Miguel Delibes
    • 2
  • Pablo Vargas
    • 1
  1. 1.Real Jardín Botánico, CSICMadridSpain
  2. 2.Estación Biológica de Doñana, CSICSevillaSpain
  3. 3.Centro de Ecologia Aplicada Prof. Baeta Neves/InBIOInstituto Superior de Agronomia, Universidade de LisboaLisbonPortugal

Personalised recommendations