Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology


The Chinese jujube (Ziziphus jujuba Mill., 2n = 2 × = 24), one of the most popular fruit trees in China, is widely cultivated and utilized in Asia. High-density genetic linkage maps are valuable resources for molecular breeding and functional genomics; however, they are still under-developed for the jujube. The genotyping by sequencing (GBS) strategy could be an efficient and cost-effective tool for single nucleotide polymorphism (SNP) discovery based on the sequenced jujube genome. Here, we report a new high-density genetic map constructed using GBS technology. An F1 population with 145 progenies and their parents (‘Dongzao’ × ‘Zhongningyuanzao’) were sequenced on the Illumina HiSeq 4000 platform. In total, 79.8 Gb of raw data containing 256,708,177 paired-end reads were generated. After data filtering and SNP genotyping, 40,372 polymorphic SNP markers were developed between the parents and 2540 (1756 non-redundant) markers were mapped onto the integrated genetic linkage map. The map spanned 1456.53 cM and was distributed among 12 linkage groups, which is consistent with the haploid chromosome number of the jujube. The average marker interval was 0.88 cM. The genetic map allowed us to anchor 224 Mb (63.7 %) of scaffolds from the sequenced ‘Junzao’ genome, containing 52 newly anchored scaffolds, which extended the genome assembly by 7 Mb. In conclusion, GBS technology was applied efficiently for SNP discovery in this study. The high-density genetic map will serve as a unique tool for molecular-assisted breeding and genomic studies, which will contribute to further research and improvement of the jujube in the near future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Asatryan A, Tel-Zur N (2013a) Intraspecific and interspecific crossability in three Ziziphus species (Rhamnaceae). Genet Resour Crop Evol 61:215–233. doi:10.1007/s10722-013-0027-8

  2. Asatryan A, Tel-Zur N (2013b) Pollen tube growth and self-incompatibility in three Ziziphus species (Rhamnaceae). Flora 208:390–399. doi:10.1016/j.flora.2013.04.010

  3. Baird NA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. doi:10.1371/journal.pone.0003376

  4. Bielenberg DG et al. (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS One 10:e0139406. doi:10.1371/journal.pone.0139406

  5. Cai C, Cheng FY, Wu J, Zhong Y, Liu G (2015) The first high-density genetic map construction in tree peony (Paeonia Sect. Moutan) using genotyping by specific-locus amplified fragment sequencing. PLoS One 10:e0128584. doi:10.1371/journal.pone.0128584

  6. Chen J et al. (2013) Chemical and biological assessment of Ziziphus jujuba fruits from China: different geographical sources and developmental stages. J Agric Food Chem 61:7315–7324. doi:10.1021/jf402379u

  7. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi:10.1038/nrg3012

  8. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

  9. Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzalez de Leon D (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526. doi:10.1007/BF00215098

  10. Fiedler JD, Lanzatella C, Okada M, Jenkins J, Schmutz J, Tobias CM (2015) High-density single nucleotide polymorphism linkage maps of lowland switchgrass using genotyping-by-sequencing. Plant Genome 8. doi:10.3835/plantgenome2014.10.0065

  11. Gao QH, CS W, Wang M (2013) The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. J Agric Food Chem 61:3351–3363. doi:10.1021/jf4007032

  12. Gaur R et al. (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373. doi:10.1093/dnares/dss018

  13. Glazer AM, Killingbeck EE, Mitros T, Rokhsar DS, Miller CT (2015) Genome assembly improvement and mapping convergently evolved skeletal traits in sticklebacks with genotyping-by-sequencing. G3 (Bethesda) 5:1463–1472. doi:10.1534/g3.115.017905

  14. Guajardo V, Solis S, Sagredo B, Gainza F, Munoz C, Gasic K, Hinrichsen P (2015) Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS One 10:e0127750. doi:10.1371/journal.pone.0127750

  15. He J, Zhao X, Laroche A, ZX L, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484. doi:10.3389/fpls.2014.00484

  16. Huang J, Yang X, Zhang C, Yin X, Liu S, Li X (2015) Development of chloroplast microsatellite markers and analysis of chloroplast diversity in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube (Ziziphus acidojujuba Mill.). PLoS One 10:e0134519. doi:10.1371/journal.pone.0134519

  17. Huang YF, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9:e102448. doi:10.1371/journal.pone.0102448

  18. International Barley Genome Sequencing Consortium et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi:10.1038/nature11543

  19. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugenics 12:172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

  20. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

  21. Li H et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

  22. Liu MJ, Wang JR, Liu P, Lin MJ, Xiao J, Liu ZG, Sun XC (2014a) Design and practice of emasculation-free cross breeding in Chinese jujube. Acta Hortic Sin 41:1495–1502

  23. Liu MJ, Wang M (2009) Germplasm resource of Chinese jujube. China Forestry Publishing House, Beijing

  24. Liu MJ et al. (2014b) The complex jujube genome provides insights into fruit tree biology. Nat Commun 5:5315. doi:10.1038/ncomms6315

  25. Ma QH, JR X, Wang GX, Yao LX (2008) Progress on hybrid breeding of Chinese jujube (Ziziphus jujuba Mill.). Chin Agric Sci Bull 24:174–178

  26. Mathew LS et al. (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long-range genome structure conservation in the palms. BMC Genomics 15:285. doi:10.1186/1471-2164-15-285

  27. Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:5. doi:10.1007/s11032-015-0212-x

  28. Poland J et al. (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113. doi:10.3835/plantgenome2012.06.0006

  29. Pootakham W et al. (2015) Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Front Plant Sci 6:367. doi:10.3389/fpls.2015.00367

  30. Qi J, Dong Z, Mao YM, Shen LY, Zhang YX, Liu J, Wang XL (2009) Construction of a dense genetic linkage map and QTL analysis of trunk diameter in Chinese jujube. Sci Silvae Sin 45:44–49

  31. Shen LY (2005) Construction of genetic linkage map and mapping QTLs for some traits in Chinese jujube (Ziziphus jujuba Mill.). Agricultural University of Hebei

  32. Soto JC et al. (2015) A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics 16:190. doi:10.1186/s12864-015-1397-4

  33. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, NM S (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699. doi:10.1101/gr.109165.110

  34. Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35. doi:10.1023/A:1022308414864

  35. Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb) 93:343–349. doi:10.1017/S0016672311000279

  36. Wang CZ, Gao JC, Gao WH, Cao DY, Wang HX, Li XG (2007) Advances in research on improvement of Chinese jujube (Ziziphus jujuba Mill.). J Fruit Sci 24:673–678

  37. Wang N, Fang L, Xin H, Wang L, Li S (2012a) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol 12:148. doi:10.1186/1471-2229-12-148

  38. Wang W et al. (2012b) Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics 13:523. doi:10.1186/1471-2164-13-523

  39. Ward JA et al. (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2. doi:10.1186/1471-2164-14-2

  40. Wu J et al. (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65:5771–5781. doi:10.1093/jxb/eru311

  41. Wu L, Tang Y, Li Y, Yin D, Pang X (2013) Estimation of genome size of Ziziphus jujuba and Z. acdiojujuba. J Beijing For Univ 35:77–83 doi:10.13332/j.1000-1522.2013.03.012

  42. Wu Y, Close TJ, Lonardi S (2008) On the accurate construction of consensus genetic maps. Comput Syst Bioinformatics Conf 7:285–296

  43. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180:2201–2208. doi:10.1534/genetics.108.090688

  44. Zhang L et al. (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082. doi:10.1007/s00122-010-1372-z

  45. Zhang Y et al. (2013) Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 13:141. doi:10.1186/1471-2229-13-141

  46. Zhang Z, Huan J, Yin X, Li XG, Liu TJ (2015) Fruit characterization of hybrid progenies derived from natural pollination cross between Ziziphus jujuba ‘Dongzao’and ‘Linyilizao’. J Fruit Sci 32:57–62

  47. Zhao J et al. (2014) Rapid SNP discovery and a RAD-based high-density linkage map in jujube (Ziziphus Mill.). PLoS One 9:e109850. doi:10.1371/journal.pone.0109850

  48. Zhou W, Tang Z, Hou J, Hu N, Yin T (2015) Genetic map construction and detection of genetic loci underlying segregation distortion in an intraspecific cross of Populus deltoides. PLoS One 10:e0126077. doi:10.1371/journal.pone.0126077

  49. Zhou X et al. (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15:351. doi:10.1186/1471-2164-15-351

  50. Zmienko A, Samelak A, Kozlowski P, Figlerowicz M (2014) Copy number polymorphism in plant genomes. Theor Appl Genet 127:1–18. doi:10.1007/s00122-013-2177-7

Download references


This study was supported by the Fundamental Research Funds for the Central Universities (No. 2014YB074) and the Key Project from the Government of Shaanxi Province (No. 2013KTZB02-03, 2015SZS-10 and 2012cxyl-2). We also thank for the graduate students Weikang Wang, Miaomiao Sun, and Shuyi Zhang in jujube research group, and Mr. Jun Zhang for the plant material preparation and DNA extraction.

Data archiving statement

The supplementary materials mentioned in the manuscript can be found in Online Resources ESM_1 through ESM_12. Detailed sequencing information of the SNP markers mapped onto the two parent maps can be found in Online Resources 7 and 8 (ESM_7 and ESM_8). The raw sequencing data reported here have been submitted to the Short Read Archive (SRA) of the National Center for Biotechnology Information (NCBI); related accession numbers are listed in Online Resource 13 (ESM_13).

Author information

Correspondence to Xingang Li or Jian Huang.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material


(XLSX 62 kb)


(XLSX 30 kb)


(XLSX 31 kb)


(XLSX 21 kb)


(XLSX 11 kb)


(XLSX 2010 kb)


(XLSX 52 kb)


(XLSX 48 kb)


(PDF 984 kb)

ESM 10

(XLSX 63 kb)

ESM 11a

(XLSX 16 kb)

ESM 11b

(PDF 1015 kb)

ESM 12

(XLSX 11 kb)

ESM 13

(XLSX 20 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wei, T., Zhong, Y. et al. Construction of a high-density genetic map of Ziziphus jujuba Mill. using genotyping by sequencing technology. Tree Genetics & Genomes 12, 76 (2016).

Download citation


  • Genetic map
  • Ziziphus jujuba Mill.
  • Genotyping by sequencing (GBS)
  • SNP