Advertisement

Tree Genetics & Genomes

, 12:71 | Cite as

Inheritance of reproductive phenology traits and related QTL identification in apricot

  • Juan Alfonso Salazar
  • David Ruiz
  • José Antonio Campoy
  • Stefano Tartarini
  • Luca DondiniEmail author
  • Pedro Martínez-GómezEmail author
Original Article
Part of the following topical collections:
  1. Complex Traits

Abstract

Reproductive phenological traits of great agronomical interest in apricot species, including flowering date, ripening date and fruit development period, were studied during 3 years in two F1 progenies derived from the crosses ‘Bergeron’ × ‘Currot’ (B × C) and ‘Goldrich’ × ‘Currot’ (G × C). Results showed great variability and segregation in each population, confirming the polygenic nature and quantitative inheritance of all the studied traits. Genetic linkage maps were constructed combining SSR and SNP markers, using 87 markers in the ‘B × C’ population and 89 markers in ‘G × C’. The genetic linkage maps in both progenies show the eight linkage groups (LGs) of apricot, covering a distance of 394.9 cM in ‘Bergeron’ and of 414.3 cM in ‘Currot’. The ‘Goldrich’ and ‘Currot’ maps were of 353.5 and 422.3 cM, respectively. The average distance obtained between markers was thus 7.59 cM in ‘Bergeron’ and 7.53 cM in ‘Currot’, whereas the ‘Goldrich’ and ‘Currot’ averages were 5.6 and 7.5 cM, respectively. According to the polygenic nature of the studied phenology traits, QTLs linked to flowering date, ripening date and the fruit development period were identified during the 3 years of the study in all LGs except for LG 8. Among the QTLs identified, major QTLs for flowering and ripening date and the fruit development period were identified in LG 4, especially important in the ‘G × C’ population.

Keywords

Prunus armeniaca Breeding phenology Flowering Ripening Breeding Molecular markers SNPlex SSR 

Notes

Acknowledgments

This study was supported by project “apricot breeding” (AGL2013-41,452-R) of the Spanish Ministry of Science and “breeding stone fruit species assisted by molecular tools” of the Seneca Foundation of the region of Murcia (19879/GERM/15). The authors thank the Fondazione Cassa Di Risparmio in Bologna (Italy) for supporting the Sequenom analysis in the Centre for Applied Biomedical Research (CRBA) of Bologna.

Data archiving statement

The progenitors used in the generation of progenies are registered in the Plant Variety Database (PLUTO; http://www.upov.int/pluto/en) belonging to the International Union for the Protection of New Varieties of Plants (UPOV) http://www.upov.int. The apricot cultivars and progenies in the study belong to the germplasm collection and breeding programmes of CEBAS-CSIC, which includes some breeding research material whose QTL data is available in the Genome Database for Rosaceae (GDR, http://www.rosaceae.org).

Supplementary material

11295_2016_1027_MOESM1_ESM.docx (20 kb)
Table S1 (DOCX 19 kb)
11295_2016_1027_MOESM2_ESM.docx (21 kb)
Table S2 (DOCX 21 kb)
11295_2016_1027_MOESM3_ESM.docx (20 kb)
Table S3 (DOCX 20 kb)
11295_2016_1027_MOESM4_ESM.docx (21 kb)
Table S4 (DOCX 20 kb)
11295_2016_1027_MOESM5_ESM.docx (23 kb)
Table S5 (DOCX 23 kb)
11295_2016_1027_MOESM6_ESM.docx (20 kb)
Table S6 (DOCX 20 kb)
11295_2016_1027_MOESM7_ESM.docx (20 kb)
Table S7 (DOCX 19 kb)
11295_2016_1027_MOESM8_ESM.docx (21 kb)
Table S8 (DOCX 20 kb)
11295_2016_1027_MOESM9_ESM.docx (21 kb)
Table S9 (DOCX 21 kb)
11295_2016_1027_MOESM10_ESM.docx (20 kb)
Table S10 (DOCX 20 kb)
11295_2016_1027_MOESM11_ESM.docx (20 kb)
Table S11 (DOCX 20 kb)
11295_2016_1027_MOESM12_ESM.docx (26 kb)
Table S12 (DOCX 25 kb)
11295_2016_1027_MOESM13_ESM.docx (20 kb)
Table S13 (DOCX 20 kb)
11295_2016_1027_MOESM14_ESM.docx (21 kb)
Table S14 (DOCX 21 kb)
11295_2016_1027_MOESM15_ESM.docx (21 kb)
Table S15 (DOCX 21 kb)
11295_2016_1027_MOESM16_ESM.docx (19 kb)
Table S16 (DOCX 19 kb)
11295_2016_1027_MOESM17_ESM.docx (20 kb)
Table S17 (DOCX 19 kb)
11295_2016_1027_MOESM18_ESM.docx (20 kb)
Table S18 (DOCX 20 kb)
11295_2016_1027_MOESM19_ESM.docx (20 kb)
Table S19 (DOCX 20 kb)
11295_2016_1027_MOESM20_ESM.docx (20 kb)
Table S20 (DOCX 20 kb)
11295_2016_1027_MOESM21_ESM.docx (21 kb)
Table S21 (DOCX 20 kb)
11295_2016_1027_MOESM22_ESM.docx (20 kb)
Table S22 (DOCX 19 kb)
11295_2016_1027_MOESM23_ESM.docx (20 kb)
Table S23 (DOCX 19 kb)
11295_2016_1027_MOESM24_ESM.docx (127 kb)
Table S24 (DOCX 127 kb)

References

  1. Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170CrossRefGoogle Scholar
  2. Anderson JL, Seeley SD (1993) Bloom delay in deciduous fruits. Hortic Rev 15:97–144Google Scholar
  3. Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hortic Sci Biotechnol 74:757–761CrossRefGoogle Scholar
  4. Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genet 13:203CrossRefGoogle Scholar
  5. Badenes ML, Martínez-Calvo J, Llácer G (1998) Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102:93–99CrossRefGoogle Scholar
  6. Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Chang 87:S153–S166CrossRefGoogle Scholar
  7. Ball A, Stapley J, Dawson D, Birkhead T, Burke T, Slate J (2010) A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genet 11:218CrossRefGoogle Scholar
  8. Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Report 28:560–568CrossRefGoogle Scholar
  9. Campoy JA, Ruiz D, Egea J (2011a) Dormancy in temperate fruit trees in a global warming context: a review. Sci Hortic 130:357–372CrossRefGoogle Scholar
  10. Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011b) Inheritance of flowering date in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 29:404–410CrossRefGoogle Scholar
  11. Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfillment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: an approach in Murcia (Spain) and the western cape (South Africa). Eur J Agron 37:43–55CrossRefGoogle Scholar
  12. Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J (2015) New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report 33:783–796CrossRefGoogle Scholar
  13. Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87CrossRefGoogle Scholar
  14. Castède S, Campoy JA, Quero García J, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715CrossRefPubMedGoogle Scholar
  15. Castède S, Campoy JA, Le Dantec L, Quero García J, Barreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering date in sweet cherry (Prunus avium). PLoS One 10:e0143250CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van De Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7:e31745CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cipriani G, Lot G, Huang HG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Basch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Genet 99:65–72CrossRefGoogle Scholar
  18. Couranjou J (1995) Genetic studies of 11 quantitative characters in apricot. Sci Hortic 61:61–75CrossRefGoogle Scholar
  19. Dhanapal AP, Martínez-García PJ, Gradziel TM, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breed, ISSN 2050–2389Google Scholar
  20. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31CrossRefGoogle Scholar
  21. Dirlewanger E, Cosson A, Tavaud P, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret L (2002) Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet 105:127–138CrossRefPubMedGoogle Scholar
  22. Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109(5):280–292CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249CrossRefGoogle Scholar
  24. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  25. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335CrossRefGoogle Scholar
  26. Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204CrossRefGoogle Scholar
  27. Erez A (2000) Bud dormancy; phenomenon, problems and solutions in the tropics and subtropics. In: Erez A (ed) Temperate fruit crops in warm climates. Kluwer Academic Publishers, Dordrecht, pp 17–48Google Scholar
  28. Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159CrossRefPubMedGoogle Scholar
  29. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930CrossRefPubMedGoogle Scholar
  30. Hagen LS, Chaib J, Fad B, Decroocq V, Bouchet P, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellite from apricot (Prunus armeniaca L). Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  31. Hanninen H, Tanio K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16:412–416CrossRefPubMedGoogle Scholar
  32. Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21:271–281CrossRefGoogle Scholar
  33. Klagges C, Campoy JA, Quero-García J, Guzmán A, Mansur L, Gratacós E, Silva H, Rosyara UR, Iezzoni A, Meisel LA, Dirlewanger E (2013) Construction and comparative analyses of highly dense linkage maps of two sweet cherry intra-specific progenies of commercial cultivars. PLoS One 7:e54743CrossRefGoogle Scholar
  34. Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). J Exp Bot 63:1107–1121CrossRefPubMedGoogle Scholar
  35. Luedeling E, Zhang M, Girvetz EH (2009a) Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS One 4:e616CrossRefGoogle Scholar
  36. Luedeling E, Zhang MH, McGranahan G, Leslie C (2009b) Validation of winter chill models using historic records of walnut phenology. Agric For Meteorol 149:1854–1864CrossRefGoogle Scholar
  37. Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6:e20155CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36CrossRefGoogle Scholar
  39. Messina R, Lain O, Marrazo T, Cipriano G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4:432–434CrossRefGoogle Scholar
  40. Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Menesses C (2015) Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 11:86CrossRefGoogle Scholar
  42. Okie WR, Blackburn (2008) Interaction of chill and heat in peach flower bud dormancy. Hortic Sci 43:1161–1161Google Scholar
  43. Olukolu B, Trainin T, Fan S, Kole C, Bielenberg D, Reighard G, Abbott A, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828CrossRefPubMedGoogle Scholar
  44. Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, Stegmeir T, Sebolt A, Gilmore B, Lawley C, Mockler TC, Bryant DW, Wilhelm L, Iezzoni A (2012) Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7:e48305CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pirona R, Eduardo I, Pacheco I, Linge CD, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166CrossRefPubMedPubMedCentralGoogle Scholar
  46. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233–241CrossRefGoogle Scholar
  47. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897CrossRefPubMedGoogle Scholar
  48. Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158CrossRefGoogle Scholar
  49. Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263CrossRefGoogle Scholar
  50. Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, Gennari F, Cervellati C, De Franceschi P, Sansavini S, Bureau S, Gouble B, Reich M, Renard CMGC, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hortic 862:587–592CrossRefGoogle Scholar
  51. Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 31:1506–1517CrossRefGoogle Scholar
  52. Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, et al. (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18CrossRefGoogle Scholar
  53. Salazar JA, Rubio M, Ruiz D, Tartarini S, Martínez-Gómez P, Dondini L (2015) SNP development for genetic diversity analysis in apricot. Tree Genet Genome 11:15CrossRefGoogle Scholar
  54. Sánchez-Pérez R, Howad D, Dicenta F, Arús P, Martínez-Gómez P (2007a) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318CrossRefGoogle Scholar
  55. Sánchez-Pérez R, Ortega E, Duval H, Martínez-Gómez P, Dicenta F (2007b) Inheritance and relationships of important agronomic traits in almond. Euphytica 155:381–391CrossRefGoogle Scholar
  56. Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389CrossRefGoogle Scholar
  57. Seymour B, Taylor JE, Tucker GA (1993) Biochemistry of fruits ripening. Chapman and Hall, LondonCrossRefGoogle Scholar
  58. Socquet-Juglard D, Christen D, Devenes G, Gessler C, Duffy B, Patocchi A (2013) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397CrossRefGoogle Scholar
  59. Sosinski B, Gannavarapu M, Hager LE, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L) Basch). Theor Appl Genet 101:421–428CrossRefGoogle Scholar
  60. Testolin R, Messina R, Lain O, Marrazzo MT, Huang WG, Cipriani G (2004) Microsatellites isolated in almond from an AC-repeat enriched library. Mol Ecol Notes 4:459–461CrossRefGoogle Scholar
  61. Trainin T, Bar-Ya’akov I, Holland D (2013) ParSOC1, a MADS-box gene closely related to Arabidopsis AGL20/SOC1, is expressed in apricot leaves in a diurnal manner and is linked with chilling requirements for dormancy break. Tree Genet Genomes 9:753–766CrossRefGoogle Scholar
  62. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, B.V., WageningenGoogle Scholar
  63. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883CrossRefPubMedPubMedCentralGoogle Scholar
  64. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arús P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668CrossRefPubMedPubMedCentralGoogle Scholar
  65. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan P, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arús P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS (2013) The high-quality draft of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494CrossRefPubMedGoogle Scholar
  66. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78CrossRefGoogle Scholar
  67. Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544CrossRefGoogle Scholar
  68. Wills RBH (1998) Enhancement of senescence in nonclimacteric fruit and vegetables by low ethylene levels. Acta Hortic 464:159–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Juan Alfonso Salazar
    • 1
  • David Ruiz
    • 1
  • José Antonio Campoy
    • 2
    • 3
  • Stefano Tartarini
    • 4
  • Luca Dondini
    • 4
    Email author
  • Pedro Martínez-Gómez
    • 1
    Email author
  1. 1.Departamento de Mejora VegetalCEBAS-CSICEspinardoSpain
  2. 2.University of BordeauxVillenave d’OrnonFrance
  3. 3.Villenave d’OrnonFrance
  4. 4.Dipartimento di Scienze AgrarieUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations