Advertisement

Tree Genetics & Genomes

, 12:31 | Cite as

A multiplexed set of microsatellite markers for discriminating Acacia mangium, A. auriculiformis, and their hybrid

  • Son LeEmail author
  • Wickneswari Ratnam
  • Christopher E. Harwood
  • Matthew J. Larcombe
  • Rod A. Griffin
  • Anthony Koutoulis
  • Jane L. Harbard
  • Koh Sin Cyer
  • Liew Wai Yee
  • Thinh Huy Ha
  • René E. Vaillancourt
Original Article
Part of the following topical collections:
  1. Breeding

Abstract

In order to assist breeding and gene pool conservation in tropical Acacias, we aimed to develop a set of multipurpose SSR markers for use in both Acacia mangium and A. auriculiformis. A total of 51 SSR markers (developed in A. mangium and natural A. mangium x A. auriculiformis hybrid) were tested. A final set of 16 well-performing SSR markers were identified, six of which were species diagnostic. The markers were optimized for assay in four multiplex mixes and used to genotype range-wide samples of A. mangium, A. auriculiformis, and putative F1 hybrids. Simulation analysis was used to investigate the power of the markers for identifying the pure species and their F1, F2, and backcross hybrids. The six species diagnostic markers were particularly powerful for detecting F1 hybrids from pure species but could also discriminate the pure species from F2 and backcross progenies in most cases (97 %). STRUCTURE analysis using all 16 markers was likewise able to distinguish these cross types and pure species sets. Both sets of markers had difficulties in distinguishing F2 and backcross progenies. However, identifying F1 from pure species is the current primary concern in countries where these species are planted. The SSR marker set also has direct application in DNA profiling (probability of identity = 4.1 × 10−13), breeding system analysis, and population genetics.

Keywords

Population genetics Breeding population Hybrid discrimination Microsatellite 

Notes

Acknowledgments

This research was funded by the Australian Centre for International Agriculture Research (ACIAR) and the Ministry of Agriculture and Rural Development (Vietnam). We acknowledge the provision of DNA extracts by Mandy Maid and Suguna Apparow from Plant Genetics Laboratory (UKM). We would like to thank Dr. Nghiem Quynh Chi (Vietnamese Academy of Forest Sciences—VAFS) for supplying control pollinated hybrid seeds, Dr. Siju Senan (UKM) for helping in experimental design, Mr. David Bush (Australian Tree Seed Centre) for supplying information on natural population locations, Peter Harrison (PhD candidate—University of Tasmania) for helping in map design, and Mr. Do Son and Mr. Phan Quyen (VAFS) who helped in sample collection.

Data archiving statement

All individual genotype data relating to this study will be available at: http://eprints.utas.edu.au/ (accession number will be supplied later).

Supplementary material

11295_2016_990_MOESM1_ESM.doc (211 kb)
ESM 1 Supplementary Table 1 List of wild populations of A. mangium and A. auriculiformis used in this study (seeds improted from ATSC). Supplementary Table 2 List of control crossed samples used for validating markers (2 samples/combination) (Am = A. mangium, Aa = A. auriculiformis). Supplementary Table 3 Primer sequences of 40 published microsatellite loci. Supplementary Table 4 Mixes of 16 markers used in second stage of genotyping. Supplementary Figure 1 Summary of simulations for K = 1 to 10 from STRUCTURE for Evanno approach for wild population of A. auriculiformis, A. mangium and their putative hybrids. (DOC 211 kb)

References

  1. Adamski DJ, Dudley NS, Morden CW, Borthakur D (2013) Cross-amplification of nonnative Acacia species in the Hawaiian Islands using microsatellite markers from Acacia koa. Plant Biosyst 147:1088–1091. doi: 10.1080/11263504.2012.749958 CrossRefGoogle Scholar
  2. Adhikari P, Chen LL, Chen X, Sapkota SD, Hwang CF (2014) Interspecific hybrid identification of Vitis aestivalis-derived ‘Norton’-based populations using microsatellite markers. Sci Hortic 179:363–366. doi: 10.1016/j.scienta.2014.09.048 CrossRefGoogle Scholar
  3. Aggarwal RK et al (2011) Permanent genetic resources added to molecular ecology resources database 1 August 2010–30 September 2010. Mol Ecol Resour 11:219–222. doi: 10.1111/j.1755-0998.2010.02944.x CrossRefPubMedGoogle Scholar
  4. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedPubMedCentralGoogle Scholar
  5. Barilani M, Bernard-Laurent A, Mucci N, Tabarroni C, Kark S, Perez Garrido JA, Randi E (2007) Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biol Conserv 137:57–69. doi: 10.1016/j.biocon.2007.01.014 CrossRefGoogle Scholar
  6. Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: Application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522. doi: 10.1111/j.1471-8286.2004.00711.x CrossRefGoogle Scholar
  7. Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc 10:77–81Google Scholar
  8. Burgarella C et al (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q-ilex). Heredity 102:442–452. doi: 10.1038/hdy.2009.8 CrossRefPubMedGoogle Scholar
  9. Butcher PA, Decroocq S, Gray Y, Moran GF (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet 101:1282-1290. doi: 10.1007/s001220051608
  10. Butcher PA, Harwood CE, Quang TH (2004) Studies of mating systems in seed stands suggest possible causes of variable outcrossing rates in natural populations of Acacia mangium. For Genet 11:303–309Google Scholar
  11. Butcher PA, Moran GF (2000) Genetic linkage mapping in Acacia mangium. 2. Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci. Theor Appl Genet 101:594–605CrossRefGoogle Scholar
  12. Costa V et al. (2012) Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Research Notes 5. doi: 10.1186/1756-0500-5-479
  13. Cullingham CI, Cooke JEK, Dang S, Coltman DW (2013) A species-diagnostic SNP panel for discriminating lodgepole pine, jack pine, and their interspecific hybrids. Tree Genet Genomes 9:1119–1127. doi: 10.1007/s11295-013-0608-x CrossRefGoogle Scholar
  14. David RG, Tai TH, Clay HS (2002) Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci 50:333–339CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  16. Faria DA, Mamani EMC, Pappas MR, Pappas GJ, Grattapaglia D (2010) A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of eucalyptus. J Hered 101:512–520. doi: 10.1093/jhered/esq024 CrossRefPubMedGoogle Scholar
  17. Grattapaglia D et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508. doi: 10.1007/s11295-012-0491-x CrossRefGoogle Scholar
  18. Griffin AR et al (2015) Breeding polyploid varieties of tropical acacias: progress and prospects. South For 77(1):41–50. doi: 10.2989/20702620.2014.999303 Google Scholar
  19. Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT (2011) Global uses of Australian acacias—recent trends and future prospects. Diver Distrib 17:837–847. doi: 10.1111/j.1472-4642.2011.00814.x CrossRefGoogle Scholar
  20. Gunn B, McDonald M, Gardiner C (1989) 1998 Seed collections of tropical acacias in Papua New Guinea and North Queensland. Australian Tree Seed Centre, CSIRO Division of Foretry and Forest Product, CanberraGoogle Scholar
  21. Harwood CE, Hardiyanto EB, Yong WC (2015) Genetic improvement of tropical acacias: achievements and challenges. South For 77(1):11–18. doi: 10.2989/20702620.2014.999302 Google Scholar
  22. Hasenkamp N, Ziegenhagen B, Mengel C, Liepelt S, Schulze L, Schmitt HP (2011) Towards a DNA marker assisted seed source identification: a pilot study in European beech (Fagus sylvatica L.). Eur J For Res 130:513–519. doi: 10.1007/s10342-010-0439-3 CrossRefGoogle Scholar
  23. Kato K, Yamaguchi S, Hanaoka S, Chigira O (2014) Comparative study of reciprocal crossing for establishment of acacia hybrids. J Trop For Sci 26:469–483Google Scholar
  24. Kha LD (2001) Studies on the use of natural hybrids between A.mangium and A. auriculiformis in Vietnam. Agriculture Publishing House, HanoiGoogle Scholar
  25. Kha LD, Hai ND, Vinh HQ (1997) Clonal tests and propagation options for natural hybrids between Acacia mangium and A. auriculiformis. Recent Developments in Acacia Planting, ACIAR proceedings 82:203–210Google Scholar
  26. Khosravi R, Kaboli M, Rezaei HR (2013) Detecting hybridization between iranian wild wolf (Canis Lupus Pallipes) and free-ranging domestic dog (Canis Familiaris) by analysis of microsatellite markers. Zool Sci 30:27–34. doi: 10.2108/zsj.30.27 CrossRefPubMedGoogle Scholar
  27. Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis. Breed Popul J Hered 96:161–166. doi: 10.1093/jhered/esi023 CrossRefGoogle Scholar
  28. Larcombe MJ, Vaillancourt RE, Jones RC, Potts BM (2014) Assessing a Bayesian Approach for Detecting Exotic Hybrids between Plantation and Native Eucalypts. International Journal of Forestry Research 2014:13 pages. doi: 10.1155/2014/650202
  29. Ma YP, Tian XL, Wu ZK, Sun WB, Zhang JL (2014) Evidence for natural hybridization between Primula beesiana and P. bulleyana, two heterostylous primroses in NW Yunnan, China. J Syst Evol 52:500–507. doi: 10.1111/jse.12077 CrossRefGoogle Scholar
  30. Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae : Mimosoideae). Aust Syst Bot 16:1–18. doi: 10.1071/sb02008 CrossRefGoogle Scholar
  31. Maslin BR, Stirton CH (1997) Generic and infrageneric classification in Acacia (Leguminosae: Mimosoideae): a list of critical species on which to build a comparative data set. Bull Int Group Study Mimosoideae 20:22–44Google Scholar
  32. Millar MA, Nuberg I, Byrne M, Sedgley M (2008) High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites. Tree Genet Genomes 4:367–377. doi: 10.1007/s11295-007-0115-z CrossRefGoogle Scholar
  33. Nambiar EKS, Harwood CE (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 1. Bio-physical determinants of production: opportunities and challenges. Int For Rev 16:225–248Google Scholar
  34. Nambiar EKS, Harwood CE, Kien ND (2014) Acacia plantations in Vietnam: research and knowledge application to secure a sustainable future. South For 77(1):1–10. doi: 10.2989/20702620.2014.999301 Google Scholar
  35. Neale D, Devey M, Jermstad K, Ahuja M, Alosi M, Marshall K (1992) Use of DNA markers in forest tree improvement research. New For 6:391CrossRefGoogle Scholar
  36. Nevill P, Reed A, Bossinger G, Vaillancourt RE, Larcombe M, Ades PK (2008) Cross-species amplification of Eucalyptus microsatellite loci. Mol Ecol Resour 8:1277–1280CrossRefPubMedGoogle Scholar
  37. Ng CH, Koh SC, Lee SL, Ng KKS, Mark A, Norwati M, Wickneswari R (2005) Isolation of 15 polymorphic microsatellite loci in Acacia hybrid (Acacia mangium × Acacia auriculiformis). Mol Ecol Notes 5:572–575. doi: 10.1111/j.1471-8286.2005.00994.x CrossRefGoogle Scholar
  38. Nghiem QC, Harbard JL, Griffin AR, Koutoulis A, Harwood CE, Ha TH (2013) Pollen-pistil interactions between autotetraploid and diploid Acacia mangium and diploid A. auriculiformis. J Trop For Sci 25:96–110Google Scholar
  39. Nielsen EE, Bach LA, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973. doi: 10.1111/j.1471-8286.2006.01433.x CrossRefGoogle Scholar
  40. Nurtjahjaningsih ILG, Saito Y, Tsuda Y, Ide Y (2007) Genetic diversity of parental and offspring populations in a Pinus merkusii seedling seed orchard detected by microsatellite markers. Bull Tokyo Univ For 118:1–14Google Scholar
  41. Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295CrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  44. Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293. doi: 10.1111/j.1365-294X.2007.03417.x CrossRefPubMedGoogle Scholar
  45. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  46. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefPubMedGoogle Scholar
  47. Rufelds CV (1998) Acacia mangium, A. auriculiformis and hybrid A. auriculiformis seedling morphology study. FRC Publication Number, vol 41. Forest Research Center, Sandakan, Malaysia, pp 83Google Scholar
  48. Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69CrossRefPubMedGoogle Scholar
  49. Sedgley M, Harbard J, Smith RMM, Wickneswari R, Griffin AR (1992) Reproductive biology and interspecific hybridisation of Acacia mangium and Acacia auriculiformis A. Cunn. ex Benth. (Leguminosae: Mimosoideae). Aust J Bot 40:37–48CrossRefGoogle Scholar
  50. Sukganah A, Choong CY, Wickneswari R, Russell J, Neale D (2013) Nucleotide sequence analysis of two lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality. Tree Genet Genomes 9:1369–1381. doi: 10.1007/s11295-013-0640-x CrossRefGoogle Scholar
  51. Vaha JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci .Mol Ecol 15:63-72. doi: 10.1111/j.1365-294X.2005.02773.x
  52. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  53. Vanden Broeck A, Storme V, Cottrell JE, Boerjan W, Van Bockstaele E, Quataert P, Van Slycken J (2004) Gene flow between cultivated poplars and native black poplar (Populus nigra L.): a case study along the river Meuse on the Dutch–Belgian border. For Ecol Manag 197:307–310. doi: 10.1016/j.foreco.2004.05.021 CrossRefGoogle Scholar
  54. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi: 10.1046/j.1365-294X.2001.01185.x CrossRefPubMedGoogle Scholar
  55. Wang W, Hu M (1996) Interspecies hybridization between Acacia mangium and A. auriculiformis identified by RAPD markers. Taiwan J For Sci 11:401–407Google Scholar
  56. White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, CambridgeCrossRefGoogle Scholar
  57. Wickneswari R (1989) Use of isozyme analysis in a proposed Acacia mangium X Acacia auriculiformis hybrid seed production orchard. J Trop For Sci 2:157–164Google Scholar
  58. Wickneswari R, Norwati M (1992) Pod production and hybrid seed yeld of Acacia mangium and Acacia auriculiformis. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. ACIAR Proceedings Series, No. 37, Sabah, pp 57–62Google Scholar
  59. Widyatmoko AY, Shiraishi S (2003) Species-specific RAPD markers for identification of Acacia mangium, A. auriculiformis and their hybrid. Kyushu J For Res 56:66–68Google Scholar
  60. Wong Melissa ML, Cannon Charles H, Wickneswari R (2012) Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data. BMC Genomics 13:726Google Scholar
  61. Yong SYC, Choong CY, Cheong PL, Pang SL, Nor Amalina R, Harikrishna JA, Mat-Isa MN, Hedley P, Milne L, Vaillancourt RE, Wickneswari R (2011) Analysis of ESTs generated from inner bark tissue of an Acacia auriculiformis x Acacia mangium hybrid. Tree Genet Genomes 7:143–152. doi: 10.1007/s11295-010-0321-y CrossRefGoogle Scholar
  62. Yuskianti V, Isoda K (2012) Genetic diversity of Acacia mangium seed orchard in Wonogiri Indonesia using microsatellite markers. HAYATI J Biosci 19:141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Son Le
    • 1
    • 4
    Email author
  • Wickneswari Ratnam
    • 2
  • Christopher E. Harwood
    • 1
    • 3
  • Matthew J. Larcombe
    • 1
  • Rod A. Griffin
    • 1
  • Anthony Koutoulis
    • 1
  • Jane L. Harbard
    • 1
  • Koh Sin Cyer
    • 2
  • Liew Wai Yee
    • 2
  • Thinh Huy Ha
    • 4
  • René E. Vaillancourt
    • 1
  1. 1.School of Biological SciencesUniversity of TasmaniaHobartAustralia
  2. 2.Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.CSIRO Land and WaterHobartAustralia
  4. 4.Vietnamese Academy of Forest SciencesBactuliemVietnam

Personalised recommendations