Tree Genetics & Genomes

, 12:29 | Cite as

Global comparative analysis of expressed genes in ovules and leaves of Ginkgo biloba L.

  • Li Wang
  • Zhaogeng Lu
  • Weixing Li
  • Jing Xu
  • Kaige Luo
  • Weichao Lu
  • Li Zhang
  • Biao JinEmail author
Original Article
Part of the following topical collections:
  1. Gene Expression


Ovules are an essential reproductive structure in all seed plants. However, limited information is available on the genetics and genomics of ovules in gymnosperms. Here, we used Illumina sequencing to derive comprehensive gene expression profiles for ovules and leaves in the extant basal gymnosperm Ginkgo biloba. A total of 100,124 transcripts, including 77,898 unigenes, were obtained by de novo assembly from leaf cDNA samples. These transcripts were functionally annotated by comparing their sequences to public protein databases as references. For the comparative analysis of gene expression levels between ovules and leaves, digital gene expression tag profiling was used. An analysis of the expressed genes revealed a high proportion of functional genes commonly expressed in both ovules and leaves. Functional gene expression analyses and microscopic observations implied that ovules and leaves share the photosynthetic structures of chloroplasts and stomata, indicating that they are homologous structures. Interestingly, many homologous genes associated with floral development were expressed in ovules, indicating that gymnosperm ovules share some gene regulatory mechanisms with angiosperm floral organs. The genes that showed highly differential expression levels between leaves and ovules were involved in flavonoid biosynthesis, cell division, hormone transport, transcriptional regulation, and starch and sucrose metabolism, and they indicated higher cell growth and division activity in the ovule. Thus, these results provide valuable gene expression information, which will contribute to an enhanced understanding of the diverse biological mechanisms in the ovules and leaves of G. biloba and provide important molecular insights into ovule evolution in early seed plants.


Ginkgo biloba Leaves Ovules Transcriptome Gene expression 



This work was financially supported by the National Natural Science Foundation of China (No. 31200145), the Three New Forestry Engineering Foundation of Jiangsu Province (No. lysx[2013]05 and lysx[2014]12), and the Graduate Practice Innovation Projects of Jiangsu Province (No._SJLX15_0672).

Author contributions

L.W. and B.J. designed the project; Z.G.L performed the experiments; W.X.L., J.X., K.G.L., W.C.L., and L.Z participated in some experiments. L.W., Z.G.L, and B.J. drafted the paper.

Data archiving statement

All of the raw data from the Illumina sequencing have been deposited in NCBI Sequence Read Archive (SRA) under accession number SRP051312, and all raw and processed DGE data are available at Gene Expression Omnibus (GEO) database accession number GSE64502.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11295_2016_989_MOESM1_ESM.doc (7.7 mb)
ESM 1 (DOC 7924 kb)
11295_2016_989_MOESM2_ESM.doc (210 kb)
ESM 2 (DOC 210 kb)
11295_2016_989_MOESM3_ESM.xlsx (15 kb)
ESM 3 (XLSX 14 kb)
11295_2016_989_MOESM4_ESM.doc (30 kb)
ESM 4 (DOC 30 kb)
11295_2016_989_MOESM5_ESM.xls (28 kb)
ESM 5 (XLS 28 kb)
11295_2016_989_MOESM6_ESM.xls (38 kb)
ESM 6 (XLS 38 kb)
11295_2016_989_MOESM7_ESM.xls (5.2 mb)
ESM 7 (XLS 5342 kb)
11295_2016_989_MOESM8_ESM.xls (40 kb)
ESM 8 (XLS 40 kb)
11295_2016_989_MOESM9_ESM.xls (572 kb)
ESM 9 (XLS 572 kb)
11295_2016_989_MOESM10_ESM.xls (81 kb)
ESM 10 (XLS 81 kb)
11295_2016_989_MOESM11_ESM.doc (130 kb)
ESM 11 (DOC 129 kb)
11295_2016_989_MOESM12_ESM.xls (40 kb)
ESM 12 (XLS 40 kb)


  1. Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232CrossRefGoogle Scholar
  2. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995PubMedGoogle Scholar
  3. Beale SI (2005) Green genes gleaned. Trends Plant Sci 10:309–312CrossRefPubMedGoogle Scholar
  4. Bencivenga S, Colombo L, Masiero S (2011) Cross talk between the sporophyte and the megagametophyte during ovule development. Sex Plant Reprod 24:113–121CrossRefPubMedGoogle Scholar
  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  6. Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, Moss WN, Twigg RW, Runko SJ, Stellari GM, McCombie WR et al (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6:143CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engström P (2013) Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytol 200:261–275CrossRefPubMedGoogle Scholar
  9. Chanderbali AS, Yoo MJ, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albertd VA, Leebens-Mack J, Altmanf NS, Ma H et al (2010) Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci 107:22570–22575CrossRefPubMedPubMedCentralGoogle Scholar
  10. Colombo L, Battaglia R, Kater MM (2008) Arabidopsis ovule development and its evolutionary conservation. Trends Plant Sci 13:444–450CrossRefPubMedGoogle Scholar
  11. Conesa A, Götz S, Garcia-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefPubMedGoogle Scholar
  12. Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:117CrossRefPubMedPubMedCentralGoogle Scholar
  13. Douglas AW, Stevenson DW, Little DP (2007) Ovule development in Ginkgo biloba L., with emphasis on the collar and nucellus. Int J Plant Sci 168:1207–1236CrossRefGoogle Scholar
  14. Drews GN, Wang DF, Steffen JG, Schumaker KS, Yadegari R (2011) Identification of genes expressed in the angiosperm female gametophyte. J Exp Bot 62:1593–1599CrossRefPubMedGoogle Scholar
  15. Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489CrossRefPubMedPubMedCentralGoogle Scholar
  16. Englund M, Carlsbecker A, Engström P, Vergara-Silva F (2011) Morphological “primary homology” and expression of AG-subfamily MADS-box genes in pines, podocarps, and yews. Evol Dev 3:171–181CrossRefGoogle Scholar
  17. Fischer TC, Meller B, Kustatscher E, Butzmann R (2010) Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. BMC Evol Biol 10:337CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727CrossRefPubMedGoogle Scholar
  19. Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, Cuesta C, Simaskova M, Benkova E, Kamiuchi Y, Aida M et al (2013) An integrative model of the control of ovule primordia formation. Plant J 76:446–455CrossRefPubMedGoogle Scholar
  20. Gong W, Chen C, Dobeš C, Fu CX, Koch MA (2008) Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Mol Phylogenet Evol 48:1094–1105CrossRefPubMedGoogle Scholar
  21. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238CrossRefPubMedGoogle Scholar
  23. Han SM, Wu ZJ, Jin Y, Yang WN, Shi HZ (2015) RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.). Tree Genet Genomes 11:37CrossRefGoogle Scholar
  24. Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854CrossRefPubMedGoogle Scholar
  25. Jin B, Wang L, Wang J, Jiang KZ, Wang Y, Jiang XX, Ni CY, Wang YL, Teng NJ (2011) The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biol 11:35CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012a) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biol 12:59CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jin B, Wang D, Lu Y, Jiang XX, Zhang M, Zhang L, Wang L (2012b) Female short shoot and ovule development in Ginkgo biloba L. with Emphasison structures associated with wind pollination. ISRN Bot 2012:230685Google Scholar
  28. Jin B, Wang D, Lu Y, Zhang M, Wang L (2012b) Structure and function of the tentpole in the reproductive process of Ginkgo biloba L. Plant Signal Behav 7:1330CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20:1775–1785CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kelley DR, Gasser CS (2009) Ovule development: genetic trends and evolutionary considerations. Sex Plant Reprod 22:229–234CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N (2013) Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant Cell Physiol 54:750–765CrossRefPubMedGoogle Scholar
  33. Lin XH, Zhang J, Li Y, Luo HM, Wu Q, Sun C, Song JY, Li XW, Wei JH, Lu AP et al (2011) Functional genomics of living fossil tree, Ginkgo, based on next-generation sequencing technology. Physiol Plant 143:207–218CrossRefPubMedGoogle Scholar
  34. Lin CP, Wu CS, Huang YY, Chaw SM (2012) The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol 4:374–381CrossRefPubMedPubMedCentralGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2—△△Ct method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  36. Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G (2012) Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits. Mol Biol Evol 29:409–419CrossRefPubMedGoogle Scholar
  37. Lovisetto A, Guzzo F, Busatto N, Casadoro G (2013) Gymnosperm B-sister genes may be involved in ovule/seed development, and in some species, in the growth of fleshy fruit-like structures. Ann Bot 112:535–544CrossRefPubMedPubMedCentralGoogle Scholar
  38. Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573CrossRefPubMedGoogle Scholar
  39. Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658CrossRefPubMedGoogle Scholar
  40. Mathews S, Kramer EM (2012) The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194:910–923CrossRefPubMedGoogle Scholar
  41. Melzer R, Wang YQ, Theißen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21:118–128CrossRefPubMedGoogle Scholar
  42. Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, Bossi S, Maffei M, Bertea CM (2012) Ginkgo biloba responds to herbivory by activating early signaling and indirect defenses. PLoS One 7, e32822CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  44. Naugolnykh SV (2007) Foliar seed-bearing organs of Paleozoic Ginkgophytes and the early evolution of the Ginkgoales. Paleontol J 41:815–859CrossRefGoogle Scholar
  45. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584CrossRefPubMedGoogle Scholar
  47. Pillitteri LJ, Torii KU (2007) Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays 29:861–870CrossRefPubMedGoogle Scholar
  48. Rudall PJ, Hilton J, Vergara-Silva F, Bateman RM (2011) Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends Plant Sci 16:151–159CrossRefPubMedGoogle Scholar
  49. Ruelens P, Geuten K (2013) When paleontology and molecular genetics meet: a genetic context for the evolution of conifer ovuliferous scales. New Phytol 200:10–12CrossRefPubMedGoogle Scholar
  50. Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci U S A 91:5163–5167CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shi DQ, Yang WC (2011) Ovule development in Arabidopsis: progress and challenge. Curr Opin Plant Biol 14:74–80CrossRefPubMedGoogle Scholar
  52. Shirano Y, Shimada H, Kanamaru K, Fujiwara M, Tanaka K, Takahashi H, Unno K, Sato S, Tabata S, Hayashi H et al (2000) Chloroplast development in Arabidopsis thaliana requires the nuclear-encoded transcription factor Sigma B. FEBS Lett 485:178–182CrossRefPubMedGoogle Scholar
  53. Uemura K (1997) Cenozoic history of Ginkgo in East Asia. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Guiller JT, Tobe H (eds) Ginkgo biloba—a global treasure. Springer, Tokyo, pp 207–221CrossRefGoogle Scholar
  54. Wang T, Zhang NH, Du LF (2005) Isolation of RNA of high quality and yield from Ginkgo biloba leaves. Biotechnol Lett 27:629–633CrossRefPubMedGoogle Scholar
  55. Wang YQ, Shen JK, Berglund T, Ohlsson BA, Tang XF, Zhou ZK, Wu RY, Zhou XH, Chen JN (2010) Analysis of expressed sequence tags from Ginkgo mature foliage in China. Tree Genet Genomes 6:357–365CrossRefGoogle Scholar
  56. Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martinez-Garcia PJ et al (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yamaki S, Nagato Y, Kurata N, Nonomura KI (2011) Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Dev Biol 351:208–216CrossRefPubMedGoogle Scholar
  58. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhao Y, Thammannagowda S, Staton M, Tang S, Xia XL, Yin WL, Liang HY (2013) An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. Planta 237:755–770CrossRefPubMedGoogle Scholar
  60. Zhou ZY (2009) An overview of fossil Ginkgoales. Palaeoworld 18:1–22CrossRefGoogle Scholar
  61. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ et al (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196:875–890CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Li Wang
    • 1
  • Zhaogeng Lu
    • 1
  • Weixing Li
    • 1
  • Jing Xu
    • 1
  • Kaige Luo
    • 1
  • Weichao Lu
    • 1
  • Li Zhang
    • 1
  • Biao Jin
    • 1
    Email author
  1. 1.College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouChina

Personalised recommendations