Tree Genetics & Genomes

, 12:22 | Cite as

A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

  • Chien-Yuan Lin
  • Quanzi Li
  • Sermsawat Tunlaya-Anukit
  • Rui Shi
  • Ying-Hsuan Sun
  • Jack P. Wang
  • Jie Liu
  • Philip Loziuk
  • Charles W. Edmunds
  • Zachary D. Miller
  • Ilona Peszlen
  • David C. Muddiman
  • Ronald R. SederoffEmail author
  • Vincent L. ChiangEmail author
Original Article
Part of the following topical collections:
  1. Genome Biology


Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20 % with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60 % of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.


Lignin polymerization Populus trichocarpa Lignin peroxidase LC-MS/MS Lignin systems biology 



The National Science Foundation (USA), Plant Genome Research Program (Grant DBI-0922391) to V.L.C., the NC State University Jordan Family Endowment, NIH/NCSU Molecular Biotechnology Training Program (Grant 5T32GM00-8776-08), and the NC State University Forest Biotechnology Industrial Research Consortium supported this work.

Author contributions

C.Y.L. generated the PtrPO transgenic plants. Q.L. prepared the RNAi constructs and RNAi libraries. R.S. and Y.H.S. selected the peroxidase candidate. C.Y.L. and S.T.-A. performed the transcriptome analysis. C.Y.L. and J.L. performed the lignin and cell wall composition analysis. P.L. and D.C.M. performed the PC-IDMS protein quantification. C.Y.L., C.W.E. and Z.D.M. analyzed the modulus of elasticity of the wood samples. C.Y.L., J.P.W., I.P., R.R.S. and V.L.C. wrote the manuscript.

Compliance with ethical standards

Conflict of interest

We do not have any conflict of interest to report.

Data archiving statement

The sequence of class III peroxidases for Arabidopsis thaliana (AtPrx) and Populus trichocarpa (PtrPO) reported here are achieved and publicly available at the PeroxiBase database ( The genome information of P. trichocarpa is available in Phytozome ( The accession numbers for plant peroxidases in National Center for Biotechnology Information (NCBI; are available as follows: TPX1 (L13654), FBP1 (AF149277), ZPO-C (AB023959), ZePrx (AJ880392), TP60 (AF149251), ATP-A2 (X99952), prxA3a (Q43049), PXP3-4 (X97350), and CPWPO-C (AB210901). The accession numbers for PtrPOs are provided in Supplementary Material as Table S2.

Supplementary material

11295_2016_978_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1127 kb)


  1. Abeles FB, Dunn LJ, Morgens P, Callahan A, Dinterman RE, Schmidt J (1988) Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiol 87:609–615PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218CrossRefGoogle Scholar
  3. Allison SD, Schultz JC (2004) Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.). J Chem Ecol 30:1363–1379PubMedCrossRefGoogle Scholar
  4. Amaya I, Botella MA, de la Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84PubMedCrossRefGoogle Scholar
  5. Aoyama W, Sasaki S, Matsumura S, Mitsunaga T, Hirai H, Tsutsumi Y, Nishida T (2002) Sinapyl alcohol-specific peroxidase isoenzyme catalyzes the formation of the dehydrogenative polymer from sinapyl alcohol. J Wood Sci 48:497–504CrossRefGoogle Scholar
  6. Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–672PubMedCrossRefGoogle Scholar
  7. Barceló AR, Gómez Ros LV, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, Pedreño MA (2004) Basic peroxidases: the gateway for lignin evolution? Phytochem Rev 3:61–78CrossRefGoogle Scholar
  8. Barcelo AR, Ros LV, Carrasco AE (2007) Looking for syringyl peroxidases. Trends Plant Sci 12:486–491PubMedCrossRefGoogle Scholar
  9. Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490PubMedPubMedCentralGoogle Scholar
  10. Bernards MA, Fleming WD, Llewellyn DB, Priefer R, Yang X, Sabatino A, Plourde GL (1999) Biochemical characterization of the suberization-associated anionic peroxidase of potato. Plant Physiol 121:135–146PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernards MK, Summerhurst DK, Razem FA (2004) Oxidases, peroxidases and hydrogen peroxide: the suberin connection. Phytochem Rev 3:113–126CrossRefGoogle Scholar
  12. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863PubMedPubMedCentralCrossRefGoogle Scholar
  13. Blee KA, Choi JW, O’Connell AP, Schuch W, Lewis NG, Bolwell GP (2003) A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification. Phytochemistry 64:163–176PubMedCrossRefGoogle Scholar
  14. Bligny R, Douce R (1983) Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. Biochem J 209:489–496PubMedPubMedCentralCrossRefGoogle Scholar
  15. Botella MA, Quesada MA, Medina MI, Pliego F, Valpuesta V (1994) Induction of a tomato peroxidase gene in vascular tissue. FEBS Lett 347:195–198PubMedCrossRefGoogle Scholar
  16. Campa A (1991) Biological roles of plant peroxidases: known and potential function. Peroxidases Chem Biol 2:25–50Google Scholar
  17. Carpin S, Crèvecoeur M, Greppin H, Penel C (1999) Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini. Plant Physiol 120:799–810PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen CL (1992) Nitrobenzene and cupric oxide oxidations. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg, pp 301–321CrossRefGoogle Scholar
  19. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761PubMedCrossRefGoogle Scholar
  20. Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118:125–135PubMedPubMedCentralCrossRefGoogle Scholar
  21. Christensen JH, Montagu MV, Bauw G, Boerjan W (2001a) Xylem peroxidases: purification and altered expression. Prog Biotechnol 18:171–176CrossRefGoogle Scholar
  22. Christensen JH, Overney S, Rohde A, Diaz WA, Bauw G, Simon P, Van Montagu M, Boerjan W (2001b) The syringaldazine-oxidizing peroxidase PXP 3-4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol Biol 47:581–593PubMedCrossRefGoogle Scholar
  23. Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60:391–408PubMedCrossRefGoogle Scholar
  24. Cosio C, Dunand C (2010) Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics 11:528PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. In Holzforschung, p 21Google Scholar
  26. Dence CW (1992) The determination of lignin. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg, pp 33–61CrossRefGoogle Scholar
  27. Driouich A, Lainé A-C, Vian B, Faye L (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J 2:13–24CrossRefGoogle Scholar
  28. Duroux L, Welinder KG (2003) The peroxidase gene family in plants: a phylogenetic overview. J Mol Evol 57:397–407PubMedCrossRefGoogle Scholar
  29. Eckardt NA (2002) Probing the mysteries of lignin biosynthesis: the crystal structure of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase provides new insights. Plant Cell 14:1185–1189PubMedPubMedCentralCrossRefGoogle Scholar
  30. El Mansouri I, Mercado JA, Santiago-Dómenech N, Pliego-Alfaro F, Valpuesta V, Quesada MA (1999) Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol Plant 106:355–362CrossRefGoogle Scholar
  31. Erdtman H (1933) Dehydrierungen in der Coniferylreihe. II. Dehydrodi‐isoeugenol. Justus Liebigs Annalen der Chemie 503:283–294CrossRefGoogle Scholar
  32. Espelie KE, Kolattukudy PE (1985) Purification and characterization of an abscisic acid-inducible anionic peroxidase associated with suberization in potato (Solanum tuberosum). Arch Biochem Biophys 240:539–545PubMedCrossRefGoogle Scholar
  33. Fagerstedt K, Saranpää P, Piispanen R (1998) Peroxidase activity, isoenzymes and histological localisation in sapwood and heartwood of Scots pine (Pinus sylvestris L.). J For Res 3:43–47CrossRefGoogle Scholar
  34. Fagerstedt KV, Kukkola EM, Koistinen VV, Takahashi J, Marjamaa K (2010) Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. J Integr Plant Biol 52:186–194PubMedCrossRefGoogle Scholar
  35. Freudenberg K (1959) Biosynthesis and constitution of lignin. Nature 183:1152–1155PubMedCrossRefGoogle Scholar
  36. Freudenberg K (1965) Lignin: its constitution and formation from p-hydroxycinnamyl alcohols: lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure. Science 148:595–600PubMedCrossRefGoogle Scholar
  37. Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186CrossRefGoogle Scholar
  38. Fry W, White J (1938) Big trees. Palo Alto. Stanford Univ. Press, CAGoogle Scholar
  39. Gabaldon C, Lopez-Serrano M, Pedreno MA, Barcelo AR (2005) Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiol 139:1138–1154PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gabaldón C, López-Serrano M, Pomar F, Merino F, Cuello J, Pedreño MA, Barceló AR (2006) Characterization of the last step of lignin biosynthesis in Zinnia elegans suspension cell cultures. FEBS Lett 580:4311–4316PubMedCrossRefGoogle Scholar
  41. Gazaryan IG, Lagrimini LM, Ashby GA, Thorneley RN (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidases. Biochem J 313(Pt 3):841–847PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gomez Ros LV, Aznar-Asensio GJ, Hernandez JA, Bernal MA, Nunez-Flores MJ, Cuello J, Ros Barcelo A (2007) Structural motifs of syringyl peroxidases are conserved during angiosperm evolution. J Agric Food Chem 55:4131–4138PubMedCrossRefGoogle Scholar
  43. Grand C, Parmentier P, Boudet A, Boudet A (1985) Comparison of lignins and of enzymes involved in lignification in normal and brown midrib (bm3) mutant corn seedlings. Physiol Veg 23:905–911Google Scholar
  44. Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553PubMedCrossRefGoogle Scholar
  45. Harkin JM, Obst JR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:296–298PubMedCrossRefGoogle Scholar
  46. Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357PubMedPubMedCentralCrossRefGoogle Scholar
  47. Herrero J, Esteban-Carrasco A, Zapata JM (2013a) Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol Biochem 67:77–86PubMedCrossRefGoogle Scholar
  48. Herrero J, Fernandez-Perez F, Yebra T, Novo-Uzal E, Pomar F, Pedreno MA, Cuello J, Guera A, Esteban-Carrasco A, Zapata JM (2013b) Bioinformatic and functional characterization of the basic peroxidase 72 from Arabidopsis thaliana involved in lignin biosynthesis. Planta 237:1599–1612PubMedCrossRefGoogle Scholar
  49. Higuchi T (1985) Biosynthesis of lignin. Biosynthesis and biodegradation of wood components:141–160Google Scholar
  50. Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, BerlinCrossRefGoogle Scholar
  51. Higuchi T, Ito T, Umezawa T, Hibino T, Shibata D (1994) Red-brown color of lignified tissues of transgenic plants with antisense CAD gene: wine-red lignin from coniferyl aldehyde. J Biotechnol 37:151–158CrossRefGoogle Scholar
  52. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468PubMedCrossRefGoogle Scholar
  53. Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187PubMedCrossRefGoogle Scholar
  54. Horvath L, Peszlen I, Peralta P, Kasal B, Li L (2010) Mechanical properties of genetically engineered young aspen with modified lignin content and/or structure. Wood Fiber Sci 42:310–317Google Scholar
  55. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812PubMedCrossRefGoogle Scholar
  56. Imberty A, Goldberg R, Catesson A-M (1985) Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation. Planta 164:221–226PubMedCrossRefGoogle Scholar
  57. Kärkönen A, Koutaniemi S, Mustonen M, Syrjänen K, Brunow G, Kilpeläinen I, Teeri TH, Simola LK (2002) Lignification related enzymes in Picea abies suspension cultures. Physiol Plant 114:343–353PubMedCrossRefGoogle Scholar
  58. Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT (2012) Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies. Plant Physiol 159:1545–1570PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kavousi B, Daudi A, Cook CM, Joseleau JP, Ruel K, Devoto A, Bolwell GP, Blee KA (2010) Consequences of antisense down-regulation of a lignification-specific peroxidase on leaf and vascular tissue in tobacco lines demonstrating enhanced enzymic saccharification. Phytochemistry 71:531–542PubMedCrossRefGoogle Scholar
  60. Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428:851–854PubMedCrossRefGoogle Scholar
  61. Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266PubMedPubMedCentralCrossRefGoogle Scholar
  62. Koutaniemi S, Toikka MM, Karkonen A, Mustonen M, Lundell T, Simola LK, Kilpelainen IA, Teeri TH (2005) Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture. Plant Mol Biol 58:141–157PubMedCrossRefGoogle Scholar
  63. Koutaniemi S, Warinowski T, Karkonen A, Alatalo E, Fossdal CG, Saranpaa P, Laakso T, Fagerstedt KV, Simola LK, Paulin L, Rudd S, Teeri TH (2007) Expression profiling of the lignin biosynthetic pathway in Norway spruce using EST sequencing and real-time RT-PCR. Plant Mol Biol 65:311–328PubMedCrossRefGoogle Scholar
  64. Lagrimini LM, Burkhart W, Moyer M, Rothstein S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci U S A 84:7542–7546PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lagrimini LM, Vaughn J, Erb WA, Miller SA (1993) Peroxidase overproduction in tomato: wound-induced polyphenol deposition and disease resistance. HortSci 28:218–221Google Scholar
  66. Lagrimini LM, Joly RJ, Dunlap JR, Liu T-TY (1997) The consequence of peroxidase overexpression in transgenic plants on root growth and development. Plant Mol Biol 33:887–895PubMedCrossRefGoogle Scholar
  67. Lapierre C, Pollet B, MacKay JJ, Sederoff RR (2000) Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase. J Agric Food Chem 48:2326–2331PubMedCrossRefGoogle Scholar
  68. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003a) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100:4939–4944PubMedPubMedCentralCrossRefGoogle Scholar
  69. Li Y, Kajita S, Kawai S, Katayama Y, Morohoshi N (2003b) Down-regulation of an anionic peroxidase in transgenic aspen and its effect on lignin characteristics. J Plant Res 116:175–182PubMedCrossRefGoogle Scholar
  70. Li Q, Min D, Wang JP-Y, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang H-M, Chiang VL (2011) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31:226–236PubMedCrossRefGoogle Scholar
  71. Liu L, Dean JFD, Friedman WE, Eriksson K-EL (1994) A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6:213–224CrossRefGoogle Scholar
  72. Liu J, Shi R, Li Q, Sederoff RR, Chiang VL (2012) A standard reaction condition and a single HPLC separation system are sufficient for estimation of monolignol biosynthetic pathway enzyme activities. Planta 236:879–885PubMedCrossRefGoogle Scholar
  73. Llorente F, Lopez-Cobollo RM, Catala R, Martinez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24PubMedCrossRefGoogle Scholar
  74. Lockhart J (2013) Breaking down the complex regulatory web underlying lignin biosynthesis. Plant Cell 25:4282PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lovrekovich L, Lovrekovich H, Stahmann MA (1968) Tobacco mosaic virus-induced resistance to Pseudomonas tabaci in tobacco. Phytopathology 58:1034–1035PubMedGoogle Scholar
  76. Loziuk PL, Wang J, Li Q, Sederoff RR, Chiang VL, Muddiman DC (2013) Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments. J Proteome Res 12:5820–5829PubMedCrossRefGoogle Scholar
  77. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388PubMedCrossRefGoogle Scholar
  78. Lu S, Li Q, Wei H, Chang M-J, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun Y-H, Yuan L, Yeh T-F, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci U S A 110:10848–10853PubMedPubMedCentralCrossRefGoogle Scholar
  79. MacKay JJ, O’Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci U S A 94:8255–8260PubMedPubMedCentralCrossRefGoogle Scholar
  80. MacKay J, Presnell T, Jameel H, Taneda H, O’Malley D, Sederoff R (1999) Modified lignin and delignification with a CAD-deficient loblolly pine. In Holzforschung, p 403Google Scholar
  81. Mader M (1980) Origin of the heterogeneity of peroxidase isoenzyme group Gr from Nicotiana tabacum. I. Conformation. Z Pflanzenphysiol 96:283–296CrossRefGoogle Scholar
  82. Marjamaa K, Kukkola E, Lundell T, Karhunen P, Saranpää P, Fagerstedt KV (2006) Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula). Tree Physiol 26:605–611PubMedCrossRefGoogle Scholar
  83. Masuda H, Fukuda H, Komamine A (1983) Changes in peroxidase isoenzyme patterns during tracheary element differentiation in a culture of single cells isolated from the mesophyll of Zinnia elegans. Z Pflanzenphysiol 112:417–426CrossRefGoogle Scholar
  84. Matsui T, Tabayashi A, Iwano M, Shinmyo A, Kato K, Nakayama H (2011) Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure. Plant Cell Physiol 52:413–420PubMedCrossRefGoogle Scholar
  85. McDougall GJ (2001) Cell-wall-associated peroxidases from the lignifying xylem of angiosperms and gymnosperms: monolignol oxidation. Holzforschung 55:246–249CrossRefGoogle Scholar
  86. McIntyre CL, Bettenay HM, Manners JM (1996) Strategies for the suppression of peroxidase gene expression in tobacco. II. In vivo suppression of peroxidase activity in transgenic tobacco using ribozyme and antisense constructs. Transgenic Res 5:263–270PubMedCrossRefGoogle Scholar
  87. Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita JM, Ralph J, Chen C, Burggraeve B, Van Montagu M, Messens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme a o-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909PubMedCrossRefGoogle Scholar
  88. Nakamura W (1967) Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J Biochem 62:54–61PubMedGoogle Scholar
  89. Nielsen KL, Indiani C, Henriksen A, Feis A, Becucci M, Gajhede M, Smulevich G, Welinder KG (2001) Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2. Biochemistry 40:11013–11021PubMedCrossRefGoogle Scholar
  90. Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561PubMedPubMedCentralCrossRefGoogle Scholar
  91. O’Malley DM, Whetten R, Bao W, Chen C-L, Sederoff RR (1993) The role of laccase in lignification. Plant J 4:751–757CrossRefGoogle Scholar
  92. Osakabe K, Koyama H, Kawai S, Katayama Y, Morohoshi N (1994) Molecular cloning and the nucleotide sequences of two novel cDNAs that encode anionic peroxidases of Populus kitakamiensis. J Plant Science 103:167–175Google Scholar
  93. Osakabe K, Koyama H, Kawai S, Katayama Y, Morohoshi N (1995) Molecular cloning of two tandemly arranged peroxidase genes from Populus kitakamiensis and their differential regulation in the stem. Plant Mol Biol 28:677–689PubMedCrossRefGoogle Scholar
  94. Ostergaard L, Pedersen AG, Jespersen HM, Brunak S, Welinder KG (1998) Computational analyses and annotations of the Arabidopsis peroxidase gene family. FEBS Lett 433:98–102PubMedCrossRefGoogle Scholar
  95. Ostergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44:231–243PubMedCrossRefGoogle Scholar
  96. Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893PubMedCrossRefGoogle Scholar
  97. Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A (1991) Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench Planta 185:538–544PubMedGoogle Scholar
  98. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidases and lignification in needles of Norway Spruce (Picea abies L.). Plant Physiol 106:53–60PubMedPubMedCentralGoogle Scholar
  99. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842PubMedPubMedCentralCrossRefGoogle Scholar
  100. Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ralph J, MacKay JJ, Hatfield RD, O’Malley DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277:235–239PubMedCrossRefGoogle Scholar
  102. Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 95:12803–12808PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  104. Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ren L-L, Liu Y-J, Liu H-J, Qian T-T, Qi L-W, Wang X-R, Zeng Q-Y (2014) Subcellular relocalization and positive selection play key roles in the retention of duplicate genes of Populus class III peroxidase family. Plant Cell 26:2404–2419PubMedPubMedCentralCrossRefGoogle Scholar
  106. Richardson A, McDougall GJ (1997) A laccase-type polyphenol oxidase from lignifying xylem of tobacco. Phytochemistry 44:229–235CrossRefGoogle Scholar
  107. Richardson A, Stewart D, McDougall GJ (1997) Identification and partial characterization of a coniferyl alcohol oxidase from lignifying xylem of Sitka spruce (Picea sitchensis). Planta 203:35–43Google Scholar
  108. Richardson A, Duncan J, McDougall GJ (2000) Oxidase activity in lignifying xylem of a taxonomically diverse range of trees: identification of a conifer laccase. Tree Physiol 20:1039–1047PubMedCrossRefGoogle Scholar
  109. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ros Barcelo A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132PubMedCrossRefGoogle Scholar
  111. Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM (2011) Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 6, e16416PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sangha AK, Davison BH, Standaert RF, Davis MF, Smith JC, Parks JM (2014) Chemical factors that control lignin polymerization. J Phys Chem B 118:164–170PubMedCrossRefGoogle Scholar
  113. Sarkanen KV, Ludwig CH (1972) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New YorkGoogle Scholar
  114. Sasaki S, Nishida T, Tsutsumi Y, Kondo R (2004) Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage. FEBS Lett 562:197–201PubMedCrossRefGoogle Scholar
  115. Sasaki S, Baba K, Nishida T, Tsutsumi Y, Kondo R (2006) The cationic cell-wall-peroxidase having oxidation ability for polymeric substrate participates in the late stage of lignification of Populus alba L. Plant Mol Biol 62:797–807PubMedCrossRefGoogle Scholar
  116. Sasaki S, Nonaka D, Wariishi H, Tsutsumi Y, Kondo R (2008) Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin. Phytochemistry 69:348–355PubMedCrossRefGoogle Scholar
  117. Sato Y, Sugiyama M, Komamine A, Fukuda H (1995) Separation and characterization of the isoenzymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196:141–147CrossRefGoogle Scholar
  118. Sato Y, Bao W, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155CrossRefGoogle Scholar
  119. Sato Y, Demura T, Yamawaki K, Inoue Y, Sato S, Sugiyama M, Fukuda H (2006) Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol 47:493–503PubMedCrossRefGoogle Scholar
  120. Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 167:541–550CrossRefGoogle Scholar
  121. Shi R, Sun YH, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163PubMedCrossRefGoogle Scholar
  122. Shigeto J, Kiyonaga Y, Fujita K, Kondo R, Tsutsumi Y (2013) Putative cationic cell-wall-bound peroxidase homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are involved in lignification. J Agric Food Chem 61:3781–3788PubMedCrossRefGoogle Scholar
  123. Shuford CM, Sederoff RR, Chiang VL, Muddiman DC (2012) Peptide production and decay rates affect the quantitative accuracy of protein cleavage isotope dilution mass spectrometry (PC-IDMS). Mol Cell Proteomics 11:814–823PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Seguin A (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076PubMedPubMedCentralCrossRefGoogle Scholar
  125. Smith CG, Rodgers MW, Zimmerlin A, Ferdinando D, Bolwell GP (1994) Tissue and subcellular immunolocalisation of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (Phaseolus vulgaris L.). Planta 192:155–164CrossRefGoogle Scholar
  126. Song J, Lu S, Chen ZZ, Lourenco R, Chiang VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol 47:1582–1589PubMedCrossRefGoogle Scholar
  127. Sterjiades R, Dean JF, Eriksson KE (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168PubMedPubMedCentralCrossRefGoogle Scholar
  128. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108:6300–6305PubMedPubMedCentralCrossRefGoogle Scholar
  129. Takahama U (1995) Oxidation of hydroxycinnamic acid and hydroxycinnamyl alcohol derivatives by laccase and peroxidase. Interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reactions. Physiol Plant 93:61–68CrossRefGoogle Scholar
  130. Tamura T, Morohoshi N, Yasuda S (2001) Suitability of peroxidase-suppressed transgenic hybrid aspen (Populus sieboldii X Populus gradidentata) for Pulping. In Holzforschung, p 335Google Scholar
  131. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138PubMedCrossRefGoogle Scholar
  133. Tokunaga N, Kaneta T, Sato S, Sato Y (2009) Analysis of expression profiles of three peroxidase genes associated with lignification in Arabidopsis thaliana. Physiol Plant 136:237–249PubMedCrossRefGoogle Scholar
  134. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tsutsumi Y, Matsui K, Sakai K (1998) Substrate-specific peroxidases in woody angiosperms and gymnosperms participate in regulating the dehydrogenative polymerization of syringyl and guaiacyl type lignins. In Holzforschung, p 275Google Scholar
  136. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  137. Van Acker R, Leplé J-C, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MCE, Santoro N, Foster CE, Ralph J, Soetaert W, Pilate G, Boerjan W (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 111:845–850PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vance C, Kirk T, Sherwood R (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288CrossRefGoogle Scholar
  139. Vignols F, Rigau J, Torres MA, Capellades M, Puigdomènech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  140. Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wallace G, Fry SC (1999) Action of diverse peroxidases and laccases on six cell wall-related phenolic compounds. Phytochemistry 52:769–773CrossRefGoogle Scholar
  142. Wang JP, Naik PP, Chen H-C, Shi R, Lin C-Y, Liu J, Shuford CM, Li Q, Sun Y-H, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914PubMedPubMedCentralCrossRefGoogle Scholar
  143. Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285PubMedCrossRefGoogle Scholar
  144. Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172PubMedCrossRefGoogle Scholar
  145. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609PubMedCrossRefGoogle Scholar
  146. Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen ZX, Shen H, Zhang PYH, Dixon RA, Zhao BY (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625PubMedCrossRefGoogle Scholar
  147. Yeh TF, Yamada T, Capanema E, Chang HM, Chiang V, Kadla JF (2005) Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy. J Agric Food Chem 53:3328–3332PubMedCrossRefGoogle Scholar
  148. Zhang K, Qian Q, Huang Z, Wang Y, Li M, Hong L, Zeng D, Gu M, Chu C, Cheng Z (2006) Gold hull and internode2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiol 140:972–983PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang Z-Y, Dixon RA (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25:3976–3987PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zimmerlin A, Wojtaszek P, Bolwell GP (1994) Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem J 299:747–753PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chien-Yuan Lin
    • 1
    • 2
  • Quanzi Li
    • 3
  • Sermsawat Tunlaya-Anukit
    • 4
  • Rui Shi
    • 1
  • Ying-Hsuan Sun
    • 5
  • Jack P. Wang
    • 1
    • 6
  • Jie Liu
    • 1
  • Philip Loziuk
    • 7
  • Charles W. Edmunds
    • 8
  • Zachary D. Miller
    • 8
  • Ilona Peszlen
    • 8
  • David C. Muddiman
    • 7
  • Ronald R. Sederoff
    • 1
    Email author
  • Vincent L. Chiang
    • 1
    • 6
    Email author
  1. 1.Forest Biotechnology Group, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  2. 2.Biosciences CenterNational Renewable Energy LaboratoryGoldenUSA
  3. 3.State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
  4. 4.SCG Packaging PLCBan PongThailand
  5. 5.Department of ForestryNational Chung-Hsing UniversityTaichungTaiwan
  6. 6.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
  7. 7.W.M. Keck FTMS Laboratory, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  8. 8.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA

Personalised recommendations