Tree Genetics & Genomes

, 12:8 | Cite as

Association studies reveal the effect of genetic variation in lncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa

  • Mingyang Quan
  • Jiaxing Tian
  • Xiaohui Yang
  • Qingzhang Du
  • Yuepeng Song
  • Qingshi Wang
  • Jinhui Chen
  • Deqiang Zhang
Original Article
Part of the following topical collections:
  1. Complex Traits


Long noncoding RNAs (lncRNAs) play significant roles in the growth and development of herbaceous plants by regulating target genes; however, the significance of lncRNA-messenger RNA (mRNA) interactions needs to be investigated in perennial trees. Here, we combined transcript profiling and multi-single-nucleotide polymorphism (SNP) association mapping to analyze the genetic variation and putative interactions of the lncRNA UDP-glucosyltransferase-related lncRNA (UGTRL) and its predicted target PtoUGT88A1 in a natural population of 435 unrelated Populus tomentosa individuals. We detected 41 and 67 common SNPs (minor allele frequency >0.05) in UGTRL and PtoUGT88A1, respectively, in the association population. Using additive and dominant association models, we identified 86 associations with 12 traits measuring tree growth, wood properties, and photosynthetic parameters. These associations represent 36 significant SNPs (P < 0.01) from UGTRL and its putative target and explained 0.06 to 7.28 % of the phenotypic variance, indicating that UGTRL and its putative target affect wood formation. An epistasis model uncovered 84 SNP-SNP association pairs representing 38.89 % of the significant SNPs in UGTRL and PtoUGT88A1 with information gain of −8.01 to 5.57 %, revealing the strong interactions between UGTRL and its putative target. Tissue-specific expression analysis in eight tissues, including xylem and cambium, showed that UGTRL and PtoUGT88A1 displayed similar expression patterns (r = 0.77), which implied the putative lncRNA-mRNA interaction and the potential roles of the lncRNA and its target in wood formation. Our study provides a novel method integrating association studies and expression profiling for functional annotation of lncRNAs and dissection of lncRNA-mRNA interactions in trees.


Long noncoding RNAs lncRNA-mRNA interaction Multi-SNP association UDP-glucosyltransferases Wood formation Epistasis 



This work was supported by the National “863” Plan Project (No. 2013AA102702), the State Key Basic Research Program of China (No. 2012CB114506), and the Fundamental Research Funds for the Central Universities (No. BLYJ201408).

Data archiving statement

Sequence data from this article have been deposited with the GenBank Data Library under the accession nos. KR492527–KR492612.

Supplementary material

11295_2015_967_MOESM1_ESM.doc (29 kb)
Table S1 The real-time PCR primers used in this study.(DOC 29 kb)
11295_2015_967_MOESM2_ESM.doc (42 kb)
Table S2 Significant SNPs associated with all traits calculated by MLM in the association population of Populus tomentosa.(DOC 41 kb)
11295_2015_967_MOESM3_ESM.doc (50 kb)
Table S3 Significant haplotypes from UGTRL and its putative target PtoUGT88A1 associated with growth, wood properties, and photosynthetic traits in the association population of Populus tomentosa.(DOC 50 kb)
11295_2015_967_MOESM4_ESM.doc (142 kb)
Table S4 Additive effect of all significant SNPs from UGTRL and PtoUGT88A1 associated with each trait in the association population of Populus tomentosa.(DOC 142 kb)
11295_2015_967_MOESM5_ESM.doc (114 kb)
Table S5 Dominant effect of all significant SNPs from UGTRL and PtoUGT88A1 associated with each trait in the association population of Populus tomentosa(DOC 113 kb)
11295_2015_967_MOESM6_ESM.doc (158 kb)
Table S6 The additive, dominant and R 2 (phenotypic contributions) of significant SNPs associated with all the traits under both additive and dominant effects in the association population of Populus tomentosa.(DOC 157 kb)
11295_2015_967_MOESM7_ESM.doc (124 kb)
Table S7 The SNP pairs and their main effects detected from UGTRL and PtoUGT88A1 under epistasis model in the association population of Populus tomentosa.(DOC 123 kb)
11295_2015_967_MOESM8_ESM.doc (82 kb)
Fig. S1 Sequence complementarity of UGTRL and its putative target PtoUGT88A1.(DOC 82 kb)


  1. Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997PubMedCentralCrossRefPubMedGoogle Scholar
  2. Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392CrossRefPubMedGoogle Scholar
  3. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  4. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  5. Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143CrossRefPubMedGoogle Scholar
  6. Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192PubMedCentralCrossRefPubMedGoogle Scholar
  7. Collins RL, Hu T, Wejse C, Sirugo G, Williams SM, Moore JH (2013) Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. BioData Min 6:4PubMedCentralCrossRefPubMedGoogle Scholar
  8. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A 109:2654–2659PubMedCentralCrossRefPubMedGoogle Scholar
  9. Du Q, Wang B, Wei Z, Zhang D, Li B (2012) Genetic diversity and population structure of Chinese White poplar (Populus tomentosa) revealed by SSR markers. J Hered 103:853–862CrossRefPubMedGoogle Scholar
  10. Du Q, Pan W, Tian J, Li B, Zhang D (2013) The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics. PLoS One 8:e60880PubMedCentralCrossRefPubMedGoogle Scholar
  11. Du Q, Tian J, Yang X, Pan W, Xu B, Li B, Ingvarsson PK, Zhang D (2015) Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Res 22:53–67PubMedCentralCrossRefPubMedGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  13. Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St LGR, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730PubMedCentralCrossRefPubMedGoogle Scholar
  14. Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB (2013) Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol 197:162–176CrossRefPubMedGoogle Scholar
  15. Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382CrossRefPubMedGoogle Scholar
  16. Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, Pu P, Dong L, Kang C (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40:2004–2012PubMedGoogle Scholar
  17. Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes: 618-620Google Scholar
  18. Heo JB, Sung S (2011) Encoding memory of winter by noncoding RNAs. Epigenetics 6:544–547CrossRefPubMedGoogle Scholar
  19. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefPubMedGoogle Scholar
  20. Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM et al (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci U S A 109:15553–15559PubMedCentralCrossRefPubMedGoogle Scholar
  21. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralCrossRefPubMedGoogle Scholar
  22. Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174CrossRefPubMedGoogle Scholar
  23. Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295CrossRefPubMedGoogle Scholar
  24. Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323CrossRefPubMedGoogle Scholar
  25. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523PubMedCentralCrossRefPubMedGoogle Scholar
  26. Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q (2014a) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief BioinformGoogle Scholar
  27. Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014b) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40PubMedCentralCrossRefPubMedGoogle Scholar
  28. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  29. Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345PubMedCentralCrossRefPubMedGoogle Scholar
  30. Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574CrossRefPubMedGoogle Scholar
  31. Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261CrossRefPubMedGoogle Scholar
  32. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122CrossRefPubMedGoogle Scholar
  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  34. Plavcová L, Hacke UG, Almeida-Rodriguez AM, LI E, DOUGLAS CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36:186–199CrossRefPubMedGoogle Scholar
  35. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641CrossRefPubMedGoogle Scholar
  36. Quan M, Chen J, Zhang D (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16:5467–5496PubMedCentralCrossRefPubMedGoogle Scholar
  37. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ET (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484PubMedCentralCrossRefPubMedGoogle Scholar
  38. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147PubMedCentralCrossRefPubMedGoogle Scholar
  39. Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:S3004CrossRefGoogle Scholar
  40. Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 84:631–639CrossRefGoogle Scholar
  41. Sexton TR, Henry RJ, Harwood CE, Thomas DS, McManus LJ, Raymond C, Henson M, Shepherd M (2012) Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiol 158:531–541PubMedCentralCrossRefPubMedGoogle Scholar
  42. Shin JH, Chekanova JA (2014) Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 10:e1004612PubMedCentralCrossRefPubMedGoogle Scholar
  43. Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983PubMedCentralCrossRefPubMedGoogle Scholar
  44. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445PubMedCentralCrossRefPubMedGoogle Scholar
  45. Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK (2013) Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 8:e59924PubMedCentralCrossRefPubMedGoogle Scholar
  46. Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245PubMedCentralCrossRefPubMedGoogle Scholar
  47. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802CrossRefPubMedGoogle Scholar
  48. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663CrossRefPubMedGoogle Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  50. Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265PubMedCentralCrossRefPubMedGoogle Scholar
  51. Tian J, Du Q, Chang M, Zhang D (2012) Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS One 7:e53116PubMedCentralCrossRefPubMedGoogle Scholar
  52. Tian J, Du Q, Li B, Zhang D (2014) Single-nucleotide polymorphisms in the 5′ UTR of UDP-glucose dehydrogenase (PtUGDH) associate with wood properties in Populus tomentosa. Tree Genet Genomes 10:339–354CrossRefGoogle Scholar
  53. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578PubMedCentralCrossRefPubMedGoogle Scholar
  54. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604CrossRefPubMedGoogle Scholar
  55. Wang B, Du Q, Yang X, Zhang D (2014a) Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC Plant Biol 14:81PubMedCentralCrossRefPubMedGoogle Scholar
  56. Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW (2014b) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111:10359–10364PubMedCentralCrossRefPubMedGoogle Scholar
  57. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361CrossRefPubMedGoogle Scholar
  58. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276CrossRefPubMedGoogle Scholar
  59. Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532CrossRefPubMedGoogle Scholar
  60. Xu S, Jia Z (2007) Genome-wide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963PubMedCentralCrossRefPubMedGoogle Scholar
  61. Yang X, Du Q, Chen J, Wang B, Zhang D (2015) Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1. Planta 242:77–95CrossRefPubMedGoogle Scholar
  62. Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208CrossRefPubMedGoogle Scholar
  63. Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91CrossRefPubMedGoogle Scholar
  64. Zhang D, Zhang Z, Yang K (2006) QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar. Can J Forest Res 36:2015–2023CrossRefGoogle Scholar
  65. Zhang D, Zhang Z, Yang K (2007) Identification of AFLP markers associated with embryonic root development in Populus tomentosa Carr. Silvae Genet: 27-32Google Scholar
  66. Zhang D, Du Q, Xu B, Zhang Z, Li B (2010a) The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 284:105–119CrossRefPubMedGoogle Scholar
  67. Zhang D, Yang X, Zhang Z, Li B (2010b) Expression and nucleotide diversity of the poplar COBL gene. Tree Genet Genomes 6:331–344CrossRefGoogle Scholar
  68. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mingyang Quan
    • 1
  • Jiaxing Tian
    • 1
  • Xiaohui Yang
    • 1
    • 2
  • Qingzhang Du
    • 1
    • 2
  • Yuepeng Song
    • 1
    • 2
  • Qingshi Wang
    • 1
    • 2
  • Jinhui Chen
    • 1
    • 2
  • Deqiang Zhang
    • 1
    • 2
  1. 1.National Engineering Laboratory for Tree Breeding, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingPeople’s Republic of China

Personalised recommendations