Advertisement

Tree Genetics & Genomes

, 11:128 | Cite as

Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers

  • Qingwen Liu
  • Yue Song
  • Lun Liu
  • Mingyue Zhang
  • Jiangmei Sun
  • Shaoling Zhang
  • Jun Wu
Original Article
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

Pear is one of the most important temperate fruits, with high genetic diversity, but controversial classification for some genotypes or species. Our study evaluates the polymorphism of 385 pear resources belonging to five cultivated species or interspecies of Pyrus, based on a set of 134 core simple sequence repeat (SSR) markers. A total of 690 variant alleles were detected, from 2 to 12 per locus, with an average of 5.45, as well as 30 rare alleles. The clustering relationship divided the pear genotypes into three groups, with the primary division between occidental and oriental pears, revealing separate evolution processes, followed by division of Pyrus ussuriensis, Pyrus pyrifolia, and Pyrus bretschneideri. Population structure analysis with K values of 2 to 8 reflected a clear genetic composition within different genotypes, supporting Pyrus sinkiangensis as a hybrid of oriental and occidental pears and P. pyrifolia and P. bretschneideri sharing a common ancestor. However, the division of genetic components also revealed separate evolution at the different geographic and environmental conditions of South China and North China. The varieties “Pingguoli” and “Chaoxianyangli,” which currently have controversial classification, were classified into P. bretschneideri and Pyrus communis, respectively. A core collection of 88 accessions was chosen, covering all of the rare alleles and 95.54 % of all alleles. The high-quality and comprehensive evaluation of a wide range of pear cultivars by core SSR markers covering the whole genome demonstrated their excellent application for the study of genetic diversity, genetic relationships, and building a core collection for pear.

Keywords

Pear (Pyrus spp.) Core SSR markers Genetic diversity Genetic structure Core collection 

Notes

Acknowledgments

The work was financially supported by the Earmarked Fund for China Agriculture Research System (CARS-29), the Science Foundation for Distinguished Young Scientists in Jiangsu Province (BK20150025), the Ministry of Education Program for New Century Excellent Talents in University (NCET-13-0864), and the Six Talent Peaks Project in Jiangsu Province (2014-NY-025)

Compliance with ethical standards

Data archiving statement

The authors declare that all the work described in this manuscript followed the standard Tree Genetics and Genomes policy. All the primers used were in accordance with the article of Song et al. (2014).

References

  1. Ahmed N, Mir JI, Mir RR, Rather NA, Rashid R, Wani SH, Shafi W, Mir H, Sheikh MA (2012) SSR and RAPD analysis of genetic diversity in walnut (Juglans regia L.) genotypes from Jammu and Kashmir, India. Physiol and Mol Biol of Plants 18(2):149–160CrossRefGoogle Scholar
  2. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC bioinformatics 9(1):323PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bailey LH (1919) The standard cyclopedia of horticulture. MacmillanGoogle Scholar
  4. Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour and Crop Evol 54(5):959–971CrossRefGoogle Scholar
  5. Bao L, Chen K, Zhang D, Li X, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Sci Hortic 116(4):374–380CrossRefGoogle Scholar
  6. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83CrossRefPubMedGoogle Scholar
  7. Bolibok-Brągoszewska H, Targońska M, Bolibok L, Kilian A, Rakoczy-Trojanowska M (2014) Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biol 14(1):184PubMedCentralCrossRefPubMedGoogle Scholar
  8. Cao L, Qu B (2006) Study on the classification of four pear varieties by peroxidase isoenzyme. Hubei Agricultural Sciences 45(1):89–91 (in Chinese)Google Scholar
  9. Cao Y, Tian L, Gao Y, Yang J (2011) Evaluation of genetic identity and variation in cultivars of Pyrus pyrifolia (Burm.f.) Nakai from China using microsatellite markers. J HorticScienc & Biotechnol 86(4):331–336Google Scholar
  10. Castillo C, Takasaki T, Saito T, Yoshimura Y, Norioka S, Nakanishi T (2001) Reconsideration of S-genotype assignments, and discovery of a new allele based on S-RNase PCR-RFLPs in Japanese pear cultivars. Breed Sci 51(1):5–11CrossRefGoogle Scholar
  11. Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148CrossRefGoogle Scholar
  12. Chen H, Song Y, Li L, Khan MA, Li X, Schuyler S, Korban SS, Wu J, Zhang S (2014) Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Report 33:316–325CrossRefGoogle Scholar
  13. Chen S, Xia T, Chen S, Zhou Y (2005) RAPD profiling in detecting genetic variation in endemic Coelonema (Brassicaceae) of Qinghai-Tibet Plateau of China. Biochem Genet 43(3-4):189–201CrossRefPubMedGoogle Scholar
  14. Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, de Weg WEV (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61(11):3029–3039PubMedCentralCrossRefPubMedGoogle Scholar
  15. de Jesus ON, Silva SO e, Amorim EP, Ferreira CF, de Campos JMS, de Gaspari Silva G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13(1):41PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dong D, Fu X, Yuan F, Chen P, Zhu S, Li B, Yang Q, Yu X, Zhu D (2014) Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet Resour Crop Evol 61(1):173–183CrossRefGoogle Scholar
  17. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando SM (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13(1):39PubMedCentralCrossRefPubMedGoogle Scholar
  18. Erfani J, Ebadi A, Abdollahi H, Fatahi R (2012) Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Plant Molecular Biology Reporter 30(5):1065–1072CrossRefGoogle Scholar
  19. Fan L, Zhang M, Liu Q, Li L, Song Y, Wang L, Zhang S, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Reporte 31(6):1271–1282CrossRefGoogle Scholar
  20. Fernandez-Fernandez F, Harvey NG., James, CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Molecular Ecology Notes 1039–1041Google Scholar
  21. Frankel OH (1984) Genetic perspectives of germplasm conservation. Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, 161-170Google Scholar
  22. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. Population genetics of forest trees. Springer, Netherlands, 95-124Google Scholar
  23. Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One 6(2), e17279PubMedCentralCrossRefPubMedGoogle Scholar
  24. Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118(3):281–294CrossRefGoogle Scholar
  25. Huang L, Zhang X, Xie W, Zhang J, Cheng L, Yan H (2012) Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers. Genet Mol Res 11:2441–2450CrossRefPubMedGoogle Scholar
  26. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCentralCrossRefPubMedGoogle Scholar
  27. Iketani H, Yamamoto T, Katayama H, Uematsu C, Mase N, Ssto Y (2010) Introgression between native and prehistorically naturalized (archaeophytic) wild pear (Pyrus spp.) populations in Northern Tohoku, Northeast Japan. Conserv Genet 11(1):115–126CrossRefGoogle Scholar
  28. Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of East Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298(9):1689–1700CrossRefGoogle Scholar
  29. Khan M, Han Y, Zhao Y, Korban S (2012) A high-throughput apple SNP genotyping platform using the GoldenGate™ assay. Gene 494(2):196–201CrossRefPubMedGoogle Scholar
  30. Kim HT, Hirata Y, Nou IS (2002) Determination of S-genotypes of pear (Pyrus pyrifolia) cultivars by S-RNase sequencing and PCR-RFLP analyses. Mol Cells 13(3):444–451PubMedGoogle Scholar
  31. Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23(16):2155–2162CrossRefPubMedGoogle Scholar
  32. Kimura T, Shi YZ, Shoda M, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breed Sci 52(2):115–121CrossRefGoogle Scholar
  33. Lin B, Shen D (1983) Studies on the germplasmic characteristic of Pyrus by use of isozymic patterns. Acta Agriculturae Universities Zhejiangensis 9(3):235–242 (in Chinese)Google Scholar
  34. Liu J, Zheng X, Potter D, Hu C, Teng Y (2012) Genetic diversity and population structure of Pyrus calleryana (Rosaceae) in Zhejiang province, China. Biochem Syst Ecol 45:69–78CrossRefGoogle Scholar
  35. Liu Q, Song Y, Li J, Zhang M, Qi K, Zhang S, Wu J (2015) Analysis of genetic diversity of European pear (Pyrus communis L.) cultivars using core simple sequence repeat (SSR) markers. J Agric Bio 23(5):579–587 (in Chinese)Google Scholar
  36. Lu J, Wu J, Zhang S, Wu H, Zhang Y (2011) Genetic diversity and polygentic relationship among pears revealed by SSR markers. Journal of Nanjing Agriculture University 34(2):38–46Google Scholar
  37. Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. Crop genetic resources for today and tomorrow. 53-80Google Scholar
  38. Monte-Corvo L, Goulao L, Oliveira C (2000) Discrimination of pear cultivars with RAPD, AFLPTM and ISSR. VIII International Symposium on Pear 596:187–191Google Scholar
  39. Nirgude M, Babu BK, Shambhavi Y, Singh UM, Upadhyaya HD, Kumar A (2014) Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.). Mol Biol Rep 41(3):1189–1200CrossRefPubMedGoogle Scholar
  40. Oliveira CM, Mota M, Monte-Corvo L, Goulao L, Silva DM (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hortic 79:163–174CrossRefGoogle Scholar
  41. Pan Z, Kawabata S, Sugiyama N, Sakiyama R, Cao Y (2001) Genetic diversity of cultivated resources of pear in north China. International Symposium on Asian Pears, Commemorating the 100th Anniversary of Nijisseiki Pear 587: 187-194Google Scholar
  42. Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91(12):2013–2021CrossRefPubMedGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  44. Pu F (1988) Pear germplasm resource and its research. China fruit. (2):42-46 (in Chinese)Google Scholar
  45. Pu F and Wang Y (1963) China fruit flora, vol. III (pear). Shanghai Scientific and Technical, Shanghai (in Chinese)Google Scholar
  46. Qu B, Jin X, Chen Y, Liu H, Wang P (2001) RAPD analysis of germplasm resources in Pyrus. Acta Horticulturae Sinica 28(5):460–462Google Scholar
  47. Rana JC, Chahota RK, Sharma V, Rana M, Verma N, Verma B, Sharma TR (2015) Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genetics & Genomes 11(1):1–14CrossRefGoogle Scholar
  48. Rehder A (1940) Manual of cultivated trees and shrubs. 2nd. New York: MacmillanGoogle Scholar
  49. Rohlf FJ (1998) NTSYS-pc version 2.0. Numerical taxonomy and multivariate analysis system. Exeter software, Setauket, New YorkGoogle Scholar
  50. Rubtsov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Amer, Naturalist 78:358–366CrossRefGoogle Scholar
  51. Saleh B (2013) Genetic diversity in Ficus sycomorus L. species (Moraceae) using RAPD and IRAP markers. Agriculture 59(3):120–130Google Scholar
  52. Shen D, Bo W, Xu F, Wu R (2014) Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient. BMC Genet 15(Suppl 1):S11PubMedCentralCrossRefPubMedGoogle Scholar
  53. Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J (2014) Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers. Sci Hortic 167:5–16CrossRefGoogle Scholar
  54. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101(3):421–428CrossRefGoogle Scholar
  55. Sun J, Yin H, Li L, Song Y, Fan L, Zhang S, Wu J (2015) Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports and other Rosaceae species. Tree Genetics & Genomes 11(2):1–13CrossRefGoogle Scholar
  56. Takasaki T, Okada K, Castillo C, Moriya Y, Saito T, Sawamura Y, Norioka N, Norioka S, Nakanishi T (2004) Sequence of the S 9-RNase cDNA and PCR-RFLP system for discriminating S 1- to S 9-allele in Japanese pear. Euphytica 135(2):157–167CrossRefGoogle Scholar
  57. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599CrossRefPubMedGoogle Scholar
  58. Teng Y, Kenji T, Fumio T, Akihiro I (2002) Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J A MER Soc Hort Sci 127(2):262–270Google Scholar
  59. Teng Y, Tanabe K, Tamura F, ITAI A (2001) Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J Hortic Sci Biotechnol 76(6):771–779Google Scholar
  60. Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear ‘Housui’ identifying three homozygous genomic regions. Journal of the Japanese Society for Horticultural Science 78:417–424CrossRefGoogle Scholar
  61. Tian L, Gao Y, Cao Y, Liu F, Yang J (2012) Identification of Chinese white pear cultivars using SSR markers. Genet Resour Crop Evol 59(3):317–326CrossRefGoogle Scholar
  62. Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Soil Sci 72(6):482CrossRefGoogle Scholar
  63. Westwood MN, Challice JS (1978) Morphology and surface topography of pollen and anthers of Pyrus species. J Amer Soc Hort Sci 103:28–37Google Scholar
  64. Wu J, Li LT, Li M, Khan MA, Li X, Chen H, Yin H, Zhang S (2014) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany Eru 311Google Scholar
  65. Xu A, Zhu L, Jia B, Heng W, Ye Z (2011) Primarily identification of pear variants and analysis of their genetic relationship by SRAP markers. Journal of Anhui Agricultural University 3:031Google Scholar
  66. Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor APPl Genet 102:865–870CrossRefGoogle Scholar
  67. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002) Simple sequence repeats for genetic analysis in pear. Euphytica 124(1):129–137CrossRefGoogle Scholar
  68. Yan M, Guang C, Pan X, Ma H, Li W (2008) A method suitable for extracting genomic DNA from animal and plant modified CTAB method. Agricultural Science &Technology 9(2):39–41Google Scholar
  69. Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada, 10Google Scholar
  70. Yue X, Liu G, Zong Y, Teng Y, Cai D (2014) Development of genic SSR markers from transcriptome sequencing of pear buds. J Zhejiang Univ Sci B 15(4):303–312PubMedCentralCrossRefPubMedGoogle Scholar
  71. Zhang D, Shu Q, Teng Y, Chou M, Bao L, Hu H (2007) Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars. Acta Horticulturae Sinica 34(1):47–52 (in Chinese)Google Scholar
  72. Zhang M, Fan L, Liu Q, Song Y, Wei S, Zhang S, Wu J (2014) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Report 32(1):290–302CrossRefGoogle Scholar
  73. Zhang P, Li J, Li X, Liu X, Zhao X, Lu Y (2011) Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6(12), e27565PubMedCentralCrossRefPubMedGoogle Scholar
  74. Zheng X, Cai D, Potter D, Postman J, Liu J, Teng Y (2014) Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences. Mol Phylogenet Evol 80:54–65CrossRefPubMedGoogle Scholar
  75. Zhou H, Liao J, Xia Y, Teng Y (2013) Determination of genetic relationships between evergreen azalea cultivars in China using AFLP markers. Journal of Zhejiang University Science B 14(4):299–308 (in Chinese)PubMedCentralCrossRefPubMedGoogle Scholar
  76. Zong Y, Sun P, Liu J, Yue X, Li K, Teng Y (2014) Genetic diversity and population structure of seedling populations of Pyrus pashia. Plant Mol Biol Report 32(3):644–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Qingwen Liu
    • 1
  • Yue Song
    • 1
  • Lun Liu
    • 1
  • Mingyue Zhang
    • 1
  • Jiangmei Sun
    • 1
  • Shaoling Zhang
    • 1
  • Jun Wu
    • 1
  1. 1.Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina

Personalised recommendations