Advertisement

Tree Genetics & Genomes

, 11:124 | Cite as

Protected areas of Spain preserve the neutral genetic diversity of Quercus ilex L. irrespective of glacial refugia

  • Beatriz GuzmánEmail author
  • Carlos M. Rodríguez López
  • Alan Forrest
  • Emilio Cano
  • Pablo Vargas
Original Article
Part of the following topical collections:
  1. Germplasm Diversity

Abstract

Quercus ilex L. (holm oak) is a wind-pollinated, sclerophyllous tree that copes with the environmental variability of the Mediterranean climate and that displays flexible ecophysiological adaptability in relation to hydric and thermic stresses. The holm oak dominates Mediterranean woodlands on both acidic and calcareous soils and has been exposed to management (dehesas) for thousands of years. Both protected areas and glacial refugia are supposed to preserve a substantial fraction of the genetic diversity of Iberian species. Genetic diversity was examined for 68 populations sampled throughout Spain using ptDNA SNPs, ptDNA microsatellites, and primarily nuclear AFLPs. Protected populations did not significantly differ from nonprotected populations by any of the measures of levels of genetic diversity. The three-level hierarchical AMOVA indicated that a low number of protected populations harbor most of the species’ genetic diversity. In addition, we found no evidence from either ptDNA or AFLP variation to support that populations from putative glacial refugia are divergent genetic groups as expected during isolation. Outcrossing, anemophilous long-distance pollen dispersal, acorn transport by animals, tree reliance, and habitat availability in Spain probably played a primarily role in homogenizing allele frequency among populations. This result leads us to suggest that extensive gene flow has been prevalent across Spanish populations. We conclude that glacial refugia have not been essential to maintain the neutral genetic makeup of Q. ilex. Nevertheless, conservation of the holm oak in protected areas ensures protection of the species’ genetic diversity, the most widespread woodland ecosystem in Iberia and indirectly the four iconic, endangered animal species (black stork, cinereous vulture, Iberian lynx, western imperial eagle).

Keywords

Conservation planning Genetic conservation Holm oak National park Nonprotected areas 

Notes

Acknowledgments

The authors thank J. Arroyo, J. Bastida, J. Belliure, J. Camarero, M. Díaz, O. Fiz, P. García-Fayos, C. García Verdugo, C.M. Herrera, O. Lozoya, J. Martínez, V. Mirre, J. Pausas, F. Pulido, A. Tribsch and F. Valladares for field assistance; J. Fernández (Quantum Gis) for analytical assistance; and H. Sainz and R. Sánchez de Dios for providing the Quercus ilex distribution map layer. This research was supported by Fundación Biodiversidad through the project “Los parques nacionales españoles como reserva genética para la encina (Quercus ilex), el alcornoque (Quercus suber) y el acebuche (Olea europaea)” to PV and by the Spanish Ministry of Economy and Competitiveness through a Juan de la Cierva fellowship to BG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

11295_2015_950_MOESM1_ESM.pdf (11.8 mb)
ESM 1 (PDF 12086 kb)

References

  1. Albert A, Jahandiez E (1908) Catalogue des plantes vasculaires du departement du Var. ParisGoogle Scholar
  2. Aldrich PR, Cavender-Bares J (2011) Quercus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: forest trees. Springer Science & Business Media, pp 89–129Google Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  4. Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34CrossRefGoogle Scholar
  5. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398CrossRefPubMedGoogle Scholar
  6. Bozzano M, Turok J (2003) Mediterranean Oaks Network, report of the second meeting, 2–4 May 2002—Gozo, Malta. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  7. Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity. Adv Genet 13:115–155CrossRefGoogle Scholar
  8. Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015) Functional traits and adaptive capacity of European forests to climate change. Environ Exp Bot 111:91–113CrossRefGoogle Scholar
  9. Carnicer J, Coll M, Pons X, Ninyerola M, Vayreda J, Peñuelas J (2014) Large-scale recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest successional advance as key regional drivers. Global Ecol Biogeogr 23:371–384CrossRefGoogle Scholar
  10. Coart E, Van Glabeke S, Petit R, Van Bockstaele E, Roldán-Ruiz I (2005) Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conserv Genet 6:259–273CrossRefGoogle Scholar
  11. Coelho AC, Lima MB, Neves D, Cravador A (2006) Genetic diversity of two Evergreen Oaks [Quercus suber (L.) and Quercus ilex subsp. rotundifolia (Lam.)] in Portugal using AFLP markers. Silvae Genet 55:105–118Google Scholar
  12. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438CrossRefGoogle Scholar
  13. Craft KJ, Ashley MV (2007) Landscape genetic structure of bur oak (Quercus macrocarpa) savannas in Illinois. For Ecol Manag 239:13–20CrossRefGoogle Scholar
  14. Díaz M, Pulido FJ, Marañón T (2003) Diversidad biológica y sostenibilidad ecológica y económica de los sistemas adehesados. Ecosistemas 3:http://www.aeet.org/ecosistemas/033/investigacion034.htm
  15. do Amaral J (1990) Quercus L. In: Castroviejo S, Laínz M, López G, Montserrat P, Muñoz-Garmendia F, Paiva J, Villar L (eds) Flora Ibérica, vol 2. Consejo Superior de Investigaciones Ciéntificas, Madrid, pp 19–20Google Scholar
  16. Dodd RS, Kashani N (2003) Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae). Theor Appl Genet 107:884–892CrossRefPubMedGoogle Scholar
  17. Ducousso A, Michaud H, Lumaret R (1993) Reproduction and gene flow in the genus Quercus L. Ann Sci For 50:s91–s106CrossRefGoogle Scholar
  18. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefPubMedGoogle Scholar
  19. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  20. EUROPARC-España (2012) Anuario 2011 del estado de las áreas protegidas en España. Fundación Fernando González Bernáldez, MadridGoogle Scholar
  21. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedCentralPubMedGoogle Scholar
  22. FAO (1989) Plant genetic resources. Their conservation in situ for human use. RomeGoogle Scholar
  23. FAO, DFSC, IPGRI (2001) Forest genetic resources conservation and management, vol 2, In managed natural forests and protected areas (in situ). International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  24. Felicísimo AMC, Muñoz J, Villalba CJ, Mateo RG (2011) Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española, 2nd edn, Flora y vegetación. Oficina Española de Cambio Climático, Ministerio de Medio Ambiente y Medio Rural y Marino, MadridGoogle Scholar
  25. Frankel OH, Bennett E (1970) Genetic resources in plants—their exploration and conservation. Blackwell, OxfordGoogle Scholar
  26. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  27. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Gaudet M, Fara A-G, Sabatti M, Kuzminsky E, Mugnozza GS (2007) Single reaction for SNP genotyping on agarose gel by allele-specific PCR in black poplar (Populus nigra L.). Plant Mol Biol Report 25:1–9CrossRefGoogle Scholar
  29. Gimeno T, Pías B, Lemos-Filho JP, Valladares F (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98CrossRefPubMedGoogle Scholar
  30. Gimeno TE, Pías B, Lemos-Filho JP, Valladares F (2008) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98CrossRefPubMedGoogle Scholar
  31. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weiss BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  32. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Bot J Linn Soc 58:247–276CrossRefGoogle Scholar
  33. Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549CrossRefPubMedGoogle Scholar
  34. Holling CS (1996) Surprise for science, resilience for ecosystems, and incentives for people. Ecol Appl 6:733–735CrossRefGoogle Scholar
  35. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change 2007. Cambridge University Press, CambridgeGoogle Scholar
  36. Jimenez P, Diaz-Fernandez PM, Iglesias S et al (2009) Strategy for the conservation and sustainable use of Spanish forest genetic resources. Investigacion Agraria-Sistemas Y Recursos Forestales 18:13–19Google Scholar
  37. Jiménez P, López de Heredia U, Collada C, Lorenzo Z, Gil L (2004) High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Heredity 93:510–515CrossRefPubMedGoogle Scholar
  38. Kalinowski ST (2005) HP-RARE 1 0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  39. Kelleher CT, Hodkinson TR, Douglas GC, Kelly DL (2005) Species distinction in Irish populations of Quercus petraea and Q. robur: morphological versus molecular analyses. Ann Bot 96:1237–1246PubMedCentralCrossRefPubMedGoogle Scholar
  40. Koskela J, Vinceti B, Dvorak W, Bush D, Dawson IK, Loo J et al (2014) Utilization and transfer of forest genetic resources: a global review. For Ecol Manag 333:22–34CrossRefGoogle Scholar
  41. Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Quercus pubescens and Q. ilex during desiccation under standard conditions. Bull Res Counc Isr Sect E Exp Med 8D:213–224Google Scholar
  42. Larcher W, Mair B (1969) Die Temperaturresistenz als ökophysiologisches Konstitutionsmerkmal Quercus ilex und andere Eichenarten des Mittelmeergebietes. Oecol Plant 4:347–376Google Scholar
  43. Lefèvre F et al (2013) Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol 27:373–384CrossRefPubMedGoogle Scholar
  44. Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17PubMedGoogle Scholar
  45. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  46. López de Heredia U, Carrión JS, Jiménez P, Collada C, Gil L (2007a) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. J Biogeogr 34:1505–1517CrossRefGoogle Scholar
  47. López de Heredia U et al (2007b) Multi-marker phylogeny of three evergreen oaks reveals vicariant patterns in the western Mediterranean. Taxon 56:1209–1220CrossRefGoogle Scholar
  48. Lumaret R, Mir C, Michaud H, Raynald V (2002) Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol Ecol 11:2327–2336CrossRefPubMedGoogle Scholar
  49. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99CrossRefPubMedGoogle Scholar
  50. Maldonado J, Sainz H, Sánchez R, Xandri P (2001) Distribución y estado de conservación de los bosques españoles: Un análisis de las carencias en la red de territorios protegidos. In: Plana E, Campodrón J (eds) Conservación de la biodiversidad y gestión forestal. Universidad de Barcelona, Barcelona, pp 101–117Google Scholar
  51. Marañón T (1986) Plant species richness and canopy effect in the savanna-like “dehesa” of SW-Spain. Ecol Medit 12:131–141Google Scholar
  52. Maxted N, Iriondo JM, Dulloo ME, Lane A (2008) Introduction: the integration of PGR conservation with protected area management. In: Iriondo JM, Maxted N, Dulloo ME (eds) Conserving plant genetic diversity in protected areas. CAB International, Wallingford, pp 1–22Google Scholar
  53. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345CrossRefGoogle Scholar
  54. Michaud H, Lumaret R, Romane F (1992) Variation in the genetic structure and reproductive biology of holm oak populations. Vegetatio 99–100:107–113CrossRefGoogle Scholar
  55. Mousseau TA, Sinervo B, Endler JA (1999) Adaptive genetic variation in the wild. Oxford University Press, OxfordGoogle Scholar
  56. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273PubMedCentralCrossRefPubMedGoogle Scholar
  57. Ortego J, Bonal R, Muñoz A (2010) Genetic consequences of habitat fragmentation in long-lived tree species: the case of the Mediterranean holm oak (Quercus ilex, L.). J Hered 101:717–726CrossRefPubMedGoogle Scholar
  58. Palmberg-Lerche C (2007) Forest biological diversity and forest tree and shrub genetic resources: concepts, conservation strategies, priorities and values. Nature & Faune 22:21–28Google Scholar
  59. Parsons JJ (1962) The acorn-hog economy of the oak woodlands of southwestern Spain. Geogr Rev 52:211–235CrossRefGoogle Scholar
  60. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  61. Peguero-Pina JJ, Sancho-Knapik D, Barrón E, Camarero JJ, Vilagrosa A, Gil-Pelegrín E (2014) Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Ann Bot 114:301–313PubMedCentralCrossRefPubMedGoogle Scholar
  62. Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  63. Petit RJ et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  64. Petit RJ et al (2002) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. For Ecol Manag 156:5–26CrossRefGoogle Scholar
  65. Read J, Sanson GD (2003) Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160:81–99CrossRefGoogle Scholar
  66. Rico L, Ogaya R, Barbeta A, Peñuelas J (2014) Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change. Plant Biol 16:419–427CrossRefPubMedGoogle Scholar
  67. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  68. Sainz H, Sánchez de Dios R, García-Cervigón A (2010) La cartografía sintética de los paisajes vegetales españoles: una asignatura pendiente en geobotánica. Ecología 23:249–272Google Scholar
  69. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  70. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732CrossRefGoogle Scholar
  71. Sebastiani F, Carnevale S, Vendramin GG (2004) A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae. Mol Ecol Notes 4:259–261CrossRefGoogle Scholar
  72. Shafer ABA, Cullingham CI, Cote SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621CrossRefPubMedGoogle Scholar
  73. Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 9–34CrossRefGoogle Scholar
  74. Shiran B, Mashayekhi S, Jahanbazi H, Soltani A, Bruschi P (2011) Morphological and molecular diversity among populations of Quercus brantii Lindl. in western forest of Iran. Plant Biosyst 145:452–460CrossRefGoogle Scholar
  75. Swofford D (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), 4th edn. Sinauer, SunderlandGoogle Scholar
  76. Taberlet P, Fumagalli L, Wust-Saucy A, Cosson J (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  77. Tellería JL (2001) Passerine bird communities of Iberian dehesas: a review. Anim Biodivers Conserv 24:67–78Google Scholar
  78. Újvária B, Madsenb T, Kotenkod T, Olssone M, Shinec R, Wittzellf H (2002) Low genetic diversity threatens imminent extinction for the Hungarian meadow viper (Vipera ursinii rakosiensis). Biol Conserv 105:127–130CrossRefGoogle Scholar
  79. UNEP-WCMC (2008) Guidelines for applying protected area management categories. In: Dudley N (ed) About protected areas. IUCN, Geneva, pp 8–9Google Scholar
  80. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151CrossRefPubMedGoogle Scholar
  81. Vernesi C, Rocchini D, Pecchioli E, Neteler M, Vendramin GG, Paffetti D (2012) A landscape genetics approach reveals ecological-based differentiation in populations of holm oak (Quercus ilex L.) at the northern limit of its range. Bot J Linn Soc 107:458–467CrossRefGoogle Scholar
  82. Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCentralCrossRefPubMedGoogle Scholar
  83. Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19CrossRefPubMedGoogle Scholar
  84. Weiss S, Ferrand N (2007) Phylogeography of southern European refugia. Springer Science & Business MediaGoogle Scholar
  85. Wolf P, Doche B, Gielly L, Taberlet P (2004) Genetic structure of Rhododendron ferrugineum at a wide range of spatial scales. J Hered 95:301–308CrossRefPubMedGoogle Scholar
  86. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefPubMedGoogle Scholar
  87. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Beatriz Guzmán
    • 1
    Email author
  • Carlos M. Rodríguez López
    • 2
  • Alan Forrest
    • 3
  • Emilio Cano
    • 1
  • Pablo Vargas
    • 1
  1. 1.Real Jardín BotánicoCSICMadridSpain
  2. 2.Plant Research Centre, School of Agriculture, Food and Wine, Faculty of SciencesUniversity of AdelaideGlen OsmondAustralia
  3. 3.Centre for Middle Eastern PlantsRoyal Botanic Garden EdinburghEdinburghUK

Personalised recommendations