Tree Genetics & Genomes

, 11:119 | Cite as

Apple fruit texture QTLs: year and cold storage effects on sensory and instrumental traits

  • Inès Ben SadokEmail author
  • Aline Tiecher
  • Didiana Galvez-Lopez
  • Marc Lahaye
  • Pauline Lasserre-Zuber
  • Maryline Bruneau
  • Sylvain Hanteville
  • Roland Robic
  • Raphael Cournol
  • François Laurens
Original Article
Part of the following topical collections:
  1. Complex Traits


Postharvest texture change is a fundamental question for fruit growers and breeders as it drives consumer acceptability. To decipher the genetic control of fruit texture, we studied an apple segregating population over 2 years at harvest and after 2 months of cold storage. Texture complexity was dissected in quantitative traits, related to (i) sensory perception of fruit quality and (ii) fruit mechanical properties. Genetic models including storage, genotype and their interaction effects were built. After selection of a model, broad sense heritabilities were estimated. Strong genetic and storage effects were identified for all texture traits with significant interaction. Moreover, the structure of traits co-variations was preserved after storage. Based on the new integrated genetic map, numerous quantitative trait loci (QTLs) were detected, revealing multigenic control of fruit texture traits. QTLs were clustered according to the kind of texture assessment i.e. penetrometry, compression and sensory. Moreover, QTL stability over years and storage periods was investigated. Lastly, a short list of relevant texture traits, such as fruit global hardness and fruit deformation until skin failure, is proposed to optimize texture phenotyping for future quantitative genetic studies.


Apple fruit texture Postharvest storage Mechanical and sensory components Heritability QTL mapping 



This work was financed by the EU seventh Framework Program FruitBreedomics No. 265582: Integrated Approach for increasing breeding efficiency in fruit tree crops. Aline Tiecher was supported by fellowships from the Capes-Cofecub program. We thank Bernard Petit for meteorogical data collection from the station of Beaucouzé.

Data archiving statement

The data was submitted to the genome database for Rosaceae (GDR). All genotypic data will be public under accession number tfGDR 1021.

Supplementary material

11295_2015_947_MOESM1_ESM.docx (158 kb)
ESM 1 (DOCX 158 kb)


  1. Atkinson RG, Johnston SL, Yauk Y-K, Sharma NN, Schröder R (2009) Analysis of xyloglucan endotransglucosylase/hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biol Technol 51:149–157CrossRefGoogle Scholar
  2. Atkinson RG, Schröder R, Hallett IC, Cohen D, MacRae EA (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129:122–133PubMedCentralCrossRefPubMedGoogle Scholar
  3. Atkinson RG, Sutherland PW, Johnston SL, Gunaseelan K, Hallett IC, Mitra D, Brummell DA, Schroder R, Johnston JW, Schaffer RJ (2012) Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biol 12:129PubMedCentralCrossRefPubMedGoogle Scholar
  4. Ben Sadok I, Celton JM, Essalouh L, Zine El Aabidine A, Garcia G, Martinez S et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS One 8(5), e62831. doi: 10.1371/journal.pone.0062831 PlosOne
  5. Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424Google Scholar
  6. Billy L, Mehinagic E, Royer G, Renard CMGC, Arvisenet G, Prost C, Jourjon F (2008) Relationship between texture and pectin composition of two apple cultivars during storage. Postharvest Biol Technol 47:315–324CrossRefGoogle Scholar
  7. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel C-E, Kouassi AB et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090Google Scholar
  8. Bourne M (2002) Food texture and viscosity: concept and measurement, 2nd edn. Academic, San DiegoGoogle Scholar
  9. Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119CrossRefGoogle Scholar
  10. Camps C, Guillermin P, Mauget JC, Bertrand D (2005) Data analysis of penetrometric force/displacement curves for the characterization of whole apple fruits. J Texture Stud 36:387–401Google Scholar
  11. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30CrossRefPubMedGoogle Scholar
  12. Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098CrossRefPubMedGoogle Scholar
  13. Celton J-M, Martinez S, Jammes M-J, Bechti A, Salvi S, Legave J-M, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392CrossRefPubMedGoogle Scholar
  14. Celton J-M, Tustin DS, Chagne D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107CrossRefGoogle Scholar
  15. Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C et al (2012) Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS One 7(2), e31745. doi: 10.1371/journal.pone.0031745
  16. Chagné D, Dayatilake D, Diack R, Oliver M, Ireland H, Watson A, Guardiner SE, Johnson JW, Schaffer RJ, Tustin S (2014) Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Horticulture Res 1:14046. doi: 10.1038/hortres.2014.46 CrossRefGoogle Scholar
  17. Chaib J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 12:934–944CrossRefGoogle Scholar
  18. Chauvin MA, Ross CF, Pitts M, Kupferman E, Swanson B (2010) Relationship between instrumental and sensory determination of apple and pear texture. J Food Qual 33:181–198CrossRefGoogle Scholar
  19. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971Google Scholar
  20. Corollaro ML, Endrizzia I, Bertolini A, Aprea E, Demattè ML, Costa F, Biasioli F, Gasperi F (2013) Sensory profiling of apple: Methodological aspects, cultivar characterisation and postharvest changes. Postharvest Biol Technol 77:111–120CrossRefGoogle Scholar
  21. Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, Magnago P, Gasperi F, Biasioli F (2012) Texture dynamics during postharvest cold storage ripening in apple (Malus × domestica Borkh.). Postharvest Biol Technol 69:54–63CrossRefGoogle Scholar
  22. Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malusxdomestica Borkh). J Exp Bot 61:3029–3039PubMedCentralCrossRefPubMedGoogle Scholar
  23. Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190CrossRefGoogle Scholar
  24. Costa F, Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus x domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586CrossRefGoogle Scholar
  25. Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351PubMedCentralCrossRefPubMedGoogle Scholar
  26. De Belie N, Hallett IC, Harker FR, Baerdemaeker D (2000) Influence of ripening and turgor on tensile properties of pears: a microscopic study of cellular and tissue changes. J Am Soc Hortic Sci 125:350–356Google Scholar
  27. Drake SR, Elfving DC, Eisele TA (2002) Harvest maturity and storage affect quality of Cripps Pink (Pink Lady®) apples. HorTechnology 12:388–391Google Scholar
  28. Drazeta L, Lang A, Hall AJ, Volz RV, Jameson PE (2004) Air volume measurements of ‘Braeburn’ apple fruit. J Exp Bot 399:1061–1069CrossRefGoogle Scholar
  29. Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber W (2009) QTL mapping of aroma compounds analysed by headspace solidphase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521CrossRefGoogle Scholar
  30. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, LondonGoogle Scholar
  31. Gallais A (1989) Théorie de la sélection en amélioration des plantes. Masson, ParisGoogle Scholar
  32. Galvez-Lopez D, Laurens F, Devaux M, Lahaye M (2012) Texture analysis in an apple progeny through instrumental, sensory and histological phenotyping. Euphytica 185:171–183CrossRefGoogle Scholar
  33. Goulao LF (2010) Pectin de-esterification and fruit softening: revisiting a classical hypothesis. Stewart Postharvest Review 6:1–12CrossRefGoogle Scholar
  34. Goulao LF, Oliveira CM (2008) Cell wall modifications during fruit ripening: when a fruit is not a fruit. Trends Food Sci Technol 19:4–25CrossRefGoogle Scholar
  35. Grant Reid JS (1997) Carbohydrate metabolism: structural carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry, vol 5. Academic, USA, pp 205–236CrossRefGoogle Scholar
  36. Gwanpua SG, Van Buggenhout S, Verlinden BE, Christiaens S, Shpigelman A, Vicent V, Kermani ZJ, Nicolai BM, Hendrickx M, Geeraerd A (2014) Pectin modifications and the role of pectin-degrading enzymes during postharvest softening of Jonagold apples. Food Chem 158:283–291CrossRefPubMedGoogle Scholar
  37. Gwanpua SG, Verlinden BE, Hertog MLATM, Bulens I, Van de Poel B, Van Impe J et al (2012) Kinetic modeling of firmness breakdown in “Braeburn” apples stored under different controlled atmosphere conditions. Postharvest Biol Technol 67:68–74CrossRefGoogle Scholar
  38. Hampson CR, Kemp H (2003) Characteristics of important commercial apple cultivars. In: Ferree DC, Warrington IJ (eds) Apple. CABI Publishing, Wallingford, pp 61–89Google Scholar
  39. Harada T, Sunkao T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele for 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746CrossRefGoogle Scholar
  40. Harker FR, Gunson FA, Jaeger SR (2003) The case of fruit quality: an interpretative review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28:333–347CrossRefGoogle Scholar
  41. Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002) Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biol Technol 24:225–239CrossRefGoogle Scholar
  42. Harker FR, Redgwell RJ, Hallett IC, Murray SH, Carter G (1997) Texture of fresh fruit. Hortic Rev 20:121–224Google Scholar
  43. Iwanami H, Ishiguro M, Kotoda N, Takahashi S, Soejima J (2004) Evaluation of differences in softening of apple genotypes by linear regression. HortSci 39:1185–1188Google Scholar
  44. Iwanami H, Moriya S, Kotoda N, Takahashi S, Abe K (2008) Estimations of heritability and breeding value for postharvest fruit softening in apple. J Am Soc Hortic Sci 133:92–99Google Scholar
  45. Jaeger SR, Andani Z, Wakeling IN, MacFie HJH (1998) Consumer preferences for fresh and aged apples: a cross-cultural comparison. Food Qual Prefer 9:355–366CrossRefGoogle Scholar
  46. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455Google Scholar
  47. Jha G, Thakur K, Thakur P (2010) The venturia apple pathosystem: pathogenicity mechanisms and plant defense responses. BioMed Res Int 2009Google Scholar
  48. Johnston JW, Hewett EW, Banks NH, Harker FR, Hertog MLATM (2001) Physical change in apple texture with fruit temperature: effects of cultivar and time in storage. Postharvest Biol Technol 23:13–21CrossRefGoogle Scholar
  49. Johnston JW, Hewett EW, Hertog MLATM (2002) Postharvest softening of apple (Malus domestica) fruit: a review. N Z J Crop Hortic Sci 30:145–160CrossRefGoogle Scholar
  50. Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus x domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208CrossRefGoogle Scholar
  51. Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661CrossRefGoogle Scholar
  52. King GJ, Maliepaard C, Lynn JR et al (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084CrossRefGoogle Scholar
  53. King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1227–1235Google Scholar
  54. Knapp SJ, Stroup WW, Roos WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194Google Scholar
  55. Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820Google Scholar
  56. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175Google Scholar
  57. Kouassi AB, Durel CE, Costa F, Tartarini S, Weg ED, Evans K et al (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5:659–672CrossRefGoogle Scholar
  58. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18Google Scholar
  59. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668CrossRefPubMedGoogle Scholar
  60. Levene H (1960) Robust tests for equality of variances. In: Ingram Olkin, Harold Hotelling, et al (eds). Stanford University Press. 278–292Google Scholar
  61. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus x domestica Borkh.). Plant Mol Biol 52:511–526CrossRefPubMedGoogle Scholar
  62. Longhi S, Moretto M, Viola R, Velasco R, Costa F (2011) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus×domestica Borkh.). J Exp Bot 63:1107–1121Google Scholar
  63. Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus x domestica Borkh). BMC Plant Biol 13:37PubMedCentralCrossRefPubMedGoogle Scholar
  64. Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.). J Exp Bot 63:1107–1121CrossRefPubMedGoogle Scholar
  65. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73Google Scholar
  66. Maliepaard C, Sillanp MJ, Van OJW, Jansen RC, Arjas E (2001) Bayesian versus frequentist analysis of multiple quantitative trait loci with an application to an outbred apple cross. Springer, Heidelberg, ALLEMAGNEGoogle Scholar
  67. Mehinagic E, Royer G, Symoneaux R, Bertrand D, Jourjon F (2004) Prediction of the sensory quality of apples by physical measurements. Postharvest Biol Technol 34:257–269CrossRefGoogle Scholar
  68. Mikol Segonne S, Bruneau M, Celton JM, Le Gall S, Francin-Allami M, Juchaux M, Laurens F et al (2014) Multiscale investigation of mealiness in apple : an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biol 14:375CrossRefGoogle Scholar
  69. Nara K, Yoji Kato Y, Motomura Y (2001) Involvement of terminalarabinose and -galactose pectic compounds in mealiness of apple fruit during storage. Postharvest Biol Technol 22:141–150CrossRefGoogle Scholar
  70. Nobile PM, Wattebled F, Quecini V, Girardi CL, Lormeau M, Laurens F (2011) Identification of a novel α-L-arabinofuranosidase gene associated with mealiness in apple. J Exp Bot 62:4309–4321CrossRefPubMedGoogle Scholar
  71. Oey I, Van der Plancken I, Van Loey A, Hendrickx M (2007) Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Technol 19:300–308Google Scholar
  72. Oraguzie NC, Volza RK, Whitworth CJ et al (2007) Influence of Md-ACS1 allelotype and harvest season within an apple germplasm collection on fruit softening during cold air storage. Postharvest Biol Technol 44:212–219CrossRefGoogle Scholar
  73. Pena MJ, Carpita NC (2004) Loss of highly branched arabinans and debranching of rhamnogalacturonan I accompany loss of firm texture and cell separation during prolonged storage of apple. Plant Physiol 135:1305–1313PubMedCentralCrossRefPubMedGoogle Scholar
  74. Piepho HP, Mohring J, Schulz Streeck T, Ogutu JO (2012) A stage-wise approach for the analysis of multi-environment trials. Biom J 54:844–860CrossRefPubMedGoogle Scholar
  75. Pitts MJ, Cavalieri RP (1988) Objective assessment of apple maturity based on starch location. Trans ASABE 31(3):0962–0966. doi: 10.13031/2013.30807 CrossRefGoogle Scholar
  76. Ponce NMA, Ziegler VH, Stortz CA, Sozzi GO (2010) Compositional changes in cell wall polysaccharides from Japanese plum (Prunus salicina Lindl.) during growth and on-tree ripening. J Agric Food Chem 58:2562–2570CrossRefPubMedGoogle Scholar
  77. Potts SM, Khan MS, Han Y, Kushad MM, Korban SS (2014) Identification of quantitative trait loci (QTLs) for fruit quality traits in apple. Plant Mol Biol Rep 32:109–116CrossRefGoogle Scholar
  78. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897CrossRefPubMedGoogle Scholar
  79. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0, URL
  80. Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408CrossRefPubMedGoogle Scholar
  81. Rubin DB (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics 29:185–203Google Scholar
  82. Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, Niklas KJ et al (2007) A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol 144:1012–1028PubMedCentralCrossRefPubMedGoogle Scholar
  83. Segura V, Durel CE, Costes E (2009) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet Genomes 5:165–179CrossRefGoogle Scholar
  84. Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot 53:2065–2071CrossRefPubMedGoogle Scholar
  85. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP et al (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224Google Scholar
  86. Sim S-C, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in Tomato. PLoS One 7(7), e40563. doi: 10.1371/journal.pone.0040563 PubMedCentralCrossRefPubMedGoogle Scholar
  87. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744Google Scholar
  88. Szczesniak AS (2002) Texture is a sensory propriety. Food Qual Prefer 13:215–225CrossRefGoogle Scholar
  89. Thomas TR, Shackel KA, Matthews MA (2008) Mesocarp cell turgor in Vitis vinifera L. berries throughout development and its relation to firmness, growth, and the onset of ripening. Planta 228:1067–1076CrossRefPubMedGoogle Scholar
  90. Ting VJL, Silcock P, Bremer PJ, Biasioli F (2013) X-ray micro-computer tomographic method to visualize the microstructure of different apple cultivars. J Food Sci 78:E1735–E1742CrossRefPubMedGoogle Scholar
  91. Toivonen PMA, Brummell D (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48:1–14CrossRefGoogle Scholar
  92. Van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, p 63Google Scholar
  93. Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyasma BV, WageningenGoogle Scholar
  94. Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839CrossRefPubMedGoogle Scholar
  95. Volz RK, Harker FR, Lang S (2003) Firmness decline in ‘Gala’ apple during fruit development. J Am Soc Hortic Sci 128:797–802Google Scholar
  96. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78Google Scholar
  97. Wakasa Y, Kudo H, Ishikawa R et al (2006) Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biol Technol 39:193–198CrossRefGoogle Scholar
  98. Yoshioka H, Hayama H, Tatsuki M, Nakamura Y (2010) Cell wall modification during development of mealy texture in the stony-hard peach ‘Odoroki’ treated with propylene. Postharvest Biol Technol 55:1–7CrossRefGoogle Scholar
  99. Zdunek A, Konopacka D, Jesionkowska K (2010) Crispness and crunchiness judgment of apples based on contact acoustic emission. J Texture Stud 41:75–91CrossRefGoogle Scholar
  100. Zhang Q, Ma B, Li H, ChangY HY, Li J, Wei G, Zhao S, Khan M, Zhou Y, Gu C, Zhang X, Han Z, Korban S, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics 13:537PubMedCentralCrossRefPubMedGoogle Scholar
  101. Zhu Y, Barritt B (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562CrossRefGoogle Scholar
  102. Zhu Y, Zheng P, Varanasi V, Shin S, Main D, Curry E, Mattheis J (2012) Multiple plant hormones and cell wall metabolism regulate apple fruit maturation patterns and texture attributes. Tree Genet Genomes 8:1389–1406CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Inès Ben Sadok
    • 1
    Email author
  • Aline Tiecher
    • 2
  • Didiana Galvez-Lopez
    • 3
  • Marc Lahaye
    • 4
  • Pauline Lasserre-Zuber
    • 5
  • Maryline Bruneau
    • 1
  • Sylvain Hanteville
    • 1
  • Roland Robic
    • 1
  • Raphael Cournol
    • 1
  • François Laurens
    • 1
  1. 1.INRA, UMR1345 Institut de Recherche en Horticulture et SemencesAngersFrance
  2. 2.UNIPAMPAUniversidade Federal do PampaItaquiBrazil
  3. 3.Centro de BiocienciasUniversidad Autónoma de ChiapasTapachulaMexico
  4. 4.INRA, UR1268 Biopolymères Interactions AssemblagesNantesFrance
  5. 5.INRA, UMR 1095 INRA Génétique, Diversité et Ecophysiologie des CéréalesClermont FerrandFrance

Personalised recommendations